Câu hỏi:
12/07/2024 4,102Chứng minh rằng a3 + b3 = (a + b)3 – 3ab(a + b).
Áp dụng, tính a3 + b3 biết a + b = 4 và ab = 3.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có (a + b)3 = a3 + 3a2b + 3ab2 + b3
= a3 + 3ab(a + b) + b3
Do đó a3 + b3 = (a + b)3 – 3ab(a + b).
Áp dụng:
Với a + b = 4 và ab = 3, ta được:
a3 + b3 = (a + b)3 – 3ab(a + b)
= 43 – 3 . 3 . 4 = 64 – 36 = 28.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Bác Tùng gửi vào ngân hàng 200 triệu đồng theo thể thức lãi kép theo định kì với lãi suất không đổi x mỗi năm (tức là nếu đến kì hạn người gửi không rút lãi ra thì tiền lãi được tính vào vốn của kì kế tiếp). Biểu thức S = 200(1 + x)3 (triệu đồng) là số tiền bác Tùng nhận được sau 3 năm.
a) Tính số tiền bác Tùng nhận được sau 3 năm khi lãi suất x = 5,5%.
Câu 3:
Rút gọn các biểu thức:
a) (x – 2)3 + (x + 2)3 – 6x(x + 2)(x – 2);
Câu 6:
b) Khai triển S thành đa thức theo x và xác định bậc của đa thức.
về câu hỏi!