Câu hỏi:
13/07/2024 16,574Xác định vị trí các điểm M, N, P trên đường tròn lượng giác sao cho số đo của các góc lượng giác (OA, OM), (OA, ON), (OA, OP) lần lượt bằng \(\frac{\pi }{2};\frac{{7\pi }}{6}; - \frac{\pi }{6}\).
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
• Ta có \(\left( {OA,OM} \right) = \alpha = \frac{\pi }{2}\) là góc lượng giác có tia đầu là tia OA, tia cuối là tia OM và quay theo chiều dương một góc \(\frac{\pi }{2}\), khi đó tia OM trùng với tia OB.
Điểm M trên đường tròn lượng giác sao cho \(\left( {OA,OM} \right) = \alpha = \frac{\pi }{2}\) được biểu diễn trùng với điểm B.
• Ta có \[\left( {OA,ON} \right) = \beta = \frac{{7\pi }}{6} = \pi + \frac{\pi }{6}\] là góc lượng giác có tia đầu là tia OA, tia cuối là tia ON và quay theo chiều dương một góc \[\frac{{7\pi }}{6}\].
• Ta có \[\left( {OA,OP} \right) = \gamma = - \frac{\pi }{6}\] là góc lượng giác có tia đầu là tia OA, tia cuối là tia OP và quay theo chiều âm một góc \[\frac{\pi }{6}\].
Ba điểm M, N, P trên đường tròn lượng giác được biểu diễn như hình vẽ dưới đây:
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tính các giá trị lượng giác (nếu có) của mỗi góc sau:
\(\frac{\pi }{3} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\);
Câu 2:
Tính các giá trị lượng giác của mỗi góc sau: 225°; ‒225°; ‒1 035°; \(\frac{{5\pi }}{3};\frac{{19\pi }}{2}; - \frac{{159\pi }}{4}\).
Câu 3:
Tính các giá trị lượng giác (nếu có) của mỗi góc sau:
\(\frac{\pi }{2} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\);
Câu 4:
Tính các giá trị lượng giác của góc alpha trong mỗi trường hợp sau:
\(\sin \alpha = \frac{{\sqrt {15} }}{4}\) với \(\frac{\pi }{2} < \alpha < \pi \)
Câu 5:
Cho góc lượng giác (Ou, Ov) có số đo là \( - \frac{{11\pi }}{4}\), góc lượng giác (Ou, Ow) có số đo là \(\frac{{3\pi }}{4}.\) Tìm số đo của góc lượng giác (Ov, Ow).
Câu 6:
Cho góc lượng giác α sao cho \(\pi < \alpha < \frac{{3\pi }}{2}\) và \(\sin \alpha = - \frac{4}{5}\). Tìm cosα.
về câu hỏi!