Câu hỏi:

13/07/2024 17,127

Tính các giá trị lượng giác của mỗi góc sau: 225°; ‒225°; ‒1 035°; \(\frac{{5\pi }}{3};\frac{{19\pi }}{2}; - \frac{{159\pi }}{4}\).

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

‒ Các giá trị lượng giác của góc 225°:

Ta có: cos225° = cos(45° + 180°)= ‒cos45° = \( - \frac{{\sqrt 2 }}{2}\);

           sin225° = sin(45° + 180°) = sin45° = \( = - \frac{{\sqrt 2 }}{2}\);

           tan225° = tan(45° + 180°) = tan45° = 1;

           cot225° = cot(45° + 180°) = cot45° = 1.

‒ Các giá trị lượng giác của góc ‒225°:

Ta có: cos(‒225°) = cos225° = \( - \frac{{\sqrt 2 }}{2}\);

           sin(‒225°) = ‒sin225° = \[ - \left( { - \frac{{\sqrt 2 }}{2}} \right) = \frac{{\sqrt 2 }}{2}\];

           tan(‒225°) = ‒tan225° = ‒1;

           cot(‒225°) = ‒cot225° = ‒1;

‒ Các giá trị lượng giác của góc ‒1 035°:

Ta có: cos(‒1 035°) = cos(3 . 360° + 45°) = cos45° = \(\frac{{\sqrt 2 }}{2}\);

           sin(‒1 035°) = sin(3 . 360° + 45°) = sin45° = \(\frac{{\sqrt 2 }}{2}\);

            tan(‒1 035°) = tan(3 . 360° + 45°) = tan45° = 1;

            cot(‒1 035°) = cot(3 . 360° + 45°) = cot45° = 1.

‒ Các giá trị lượng giác của góc \(\frac{{5\pi }}{3}\):

Ta có: \(cos\frac{{5\pi }}{3} = cos\left( {\frac{{2\pi }}{3} + \pi } \right) = - cos\frac{{2\pi }}{3} = - \left( { - \frac{1}{2}} \right) = \frac{1}{2}\);

            \[\sin \frac{{5\pi }}{3} = \sin \left( {\frac{{2\pi }}{3} + \pi } \right) = - \sin \frac{{2\pi }}{3} = - \frac{{\sqrt 3 }}{2}\];

            \[\tan \frac{{5\pi }}{3} = \tan \left( {\frac{{2\pi }}{3} + \pi } \right) = \tan \frac{{2\pi }}{3} = - \sqrt 3 \];

            \[\cot \frac{{5\pi }}{3} = \cot \left( {\frac{{2\pi }}{3} + \pi } \right) = \cot \frac{{2\pi }}{3} = - \frac{{\sqrt 3 }}{3}\].

‒ Các giá trị lượng giác của góc \(\frac{{19\pi }}{2}\):

Ta có: \(cos\frac{{19\pi }}{2} = cos\left( {9\pi + \frac{\pi }{2}} \right) = c{\rm{os}}\left( {\pi + \frac{\pi }{2}} \right) = - cos\frac{\pi }{2} = 0\);

           \(\sin \frac{{19\pi }}{2} = \sin \left( {9\pi + \frac{\pi }{2}} \right) = \sin \left( {\pi + \frac{\pi }{2}} \right) = - \sin \frac{\pi }{2} = - 1\);

           Do \(cos\frac{{19\pi }}{2} = 0\) nên \(\tan \frac{{19\pi }}{2}\) không xác định;

           \(\cot \frac{{19\pi }}{2} = \cot \left( {9\pi + \frac{\pi }{2}} \right) = \cot \left( {\pi + \frac{\pi }{2}} \right) = \cot \frac{\pi }{2} = 0\).

‒ Các giá trị lượng giác của góc \( - \frac{{159\pi }}{4}\):

Ta có: \[cos\left( { - \frac{{159\pi }}{4}} \right) = cos\left( { - 40\pi + \frac{\pi }{4}} \right) = c{\rm{os}}\frac{\pi }{4} = \frac{{\sqrt 2 }}{2}\];

            \[\sin \left( { - \frac{{159\pi }}{4}} \right) = \sin \left( { - 40\pi + \frac{\pi }{4}} \right) = {\rm{sin}}\frac{\pi }{4} = \frac{{\sqrt 2 }}{2}\];

            \[\tan \left( { - \frac{{159\pi }}{4}} \right) = \tan \left( { - 40\pi + \frac{\pi }{4}} \right) = \tan \frac{\pi }{4} = 1\];

            \[\cot \left( { - \frac{{159\pi }}{4}} \right) = \cot \left( { - 40\pi + \frac{\pi }{4}} \right) = \cot \frac{\pi }{4} = 1\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính các giá trị lượng giác (nếu có) của mỗi góc sau:

\(\frac{\pi }{3} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\);

Xem đáp án » 13/07/2024 33,838

Câu 2:

Xác định vị trí các điểm M, N, P trên đường tròn lượng giác sao cho số đo của các góc lượng giác (OA, OM), (OA, ON), (OA, OP) lần lượt bằng \(\frac{\pi }{2};\frac{{7\pi }}{6}; - \frac{\pi }{6}\).

Xem đáp án » 13/07/2024 17,243

Câu 3:

Tính các giá trị lượng giác (nếu có) của mỗi góc sau:

\(\frac{\pi }{2} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\);

Xem đáp án » 13/07/2024 13,345

Câu 4:

Tính các giá trị lượng giác của góc alpha trong mỗi trường hợp sau:

\(\sin \alpha = \frac{{\sqrt {15} }}{4}\) với \(\frac{\pi }{2} < \alpha < \pi \)

Xem đáp án » 13/07/2024 10,453

Câu 5:

Cho góc lượng giác (Ou, Ov) có số đo là \( - \frac{{11\pi }}{4}\), góc lượng giác (Ou, Ow) có số đo là \(\frac{{3\pi }}{4}.\) Tìm số đo của góc lượng giác (Ov, Ow).

Xem đáp án » 13/07/2024 10,323

Câu 6:

Cho góc lượng giác α sao cho \(\pi < \alpha < \frac{{3\pi }}{2}\)\(\sin \alpha = - \frac{4}{5}\). Tìm cosα.

Xem đáp án » 13/07/2024 8,309

Bình luận


Bình luận