Câu hỏi:

12/07/2024 3,275 Lưu

Một vòng quay Mặt Trời quay mỗi vòng khoảng 15 phút. Tại vị trí quan sát, bạn Linh thấy vòng quay chuyển động theo chiều kim đồng hồ. Khi vòng quay chuyển động được 10 phút, bán kính của vòng quay quét một góc lượng giác có số đo bằng bao nhiêu? (Tính theo đơn vị radian).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Do vòng quay Mặt Trời quay mỗi vòng khoảng 15 phút và chuyển động theo chiều kim đồng hồ nên sau 15 phút, bán kính của vòng quay quét một góc lượng giác có số đo bằng – 2π (rad).

Do đó, sau 10 phút, bán kính của vòng quay quét một góc lượng giác có số đo bằng \(\frac{{ - 2\pi }}{{15}}.10 = \frac{{ - 4\pi }}{3}\) (rad).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho lục giác đều ABCDEF nội tiếp trong đường tròn lượng giác thứ tự đi từ A đến các  (ảnh 1)

Vì ABCDEF là lục giác đều nên

\(\widehat {AOB} = \widehat {BOC} = \widehat {COD} = \widehat {DOE} = \widehat {EOF} = \widehat {FOA} = \frac{{360^\circ }}{6} = 60^\circ = \frac{\pi }{3}\).

Khi đó, ta có:

\(\left( {OA,OB} \right) = \frac{\pi }{3} + k2\pi \);

\(\left( {OA,OC} \right) = \frac{\pi }{3} + \frac{\pi }{3} + k2\pi = \frac{{2\pi }}{3} + k2\pi \);

\(\left( {OA,OD} \right) = \pi + k2\pi \);

\(\left( {OA,OE} \right) = - \frac{\pi }{3} - \frac{\pi }{3} + k2\pi = - \frac{{2\pi }}{3} + k2\pi \);

\(\left( {OA,OF} \right) = - \frac{\pi }{3} + k2\pi \).

Lời giải

Đáp án đúng là: B

\(\frac{\pi }{2} < \alpha < \pi \) nên tan α < 0.

Do đó, từ \(1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\), ta suy ra

\(\tan \alpha = - \sqrt {\frac{1}{{{{\cos }^2}\alpha }} - 1} = - \sqrt {\frac{1}{{{{\left( { - \frac{2}{5}} \right)}^2}}} - 1} = - \frac{{\sqrt {21} }}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP