Giải SBT Toán 11 Cánh diều Góc lượng giác. Giá trị lượng giác của góc lượng giác có đáp án
26 người thi tuần này 4.6 0.9 K lượt thi 24 câu hỏi 60 phút
🔥 Đề thi HOT:
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
Trên đường tròn lượng giác lấy điểm M sao cho (OA, OM) = 40°. Gọi M' đối xứng với M qua gốc toạ độ. Khi đó số đo của góc lượng giác (OA, OM') bằng:
A. 40°+ k360°.
B. 140°+ k360°.
C. 220°+ k360°.
D. 50° + k360°.
Trên đường tròn lượng giác lấy điểm M sao cho (OA, OM) = 40°. Gọi M' đối xứng với M qua gốc toạ độ. Khi đó số đo của góc lượng giác (OA, OM') bằng:
A. 40°+ k360°.
B. 140°+ k360°.
C. 220°+ k360°.
D. 50° + k360°.
Lời giải
Đáp án đúng là: C

Vì M, M' đối xứng nhau qua gốc tọa độ O nên M, O, M' thẳng hàng.
Ta có:
(OA, OM') = (OA, OM) + (OM, OM') + k360° = 40° + 180° + k360° = 220° + k360°.
Câu 2
Cho \(\cos \alpha = - \frac{2}{5}\) với \(\frac{\pi }{2} < \alpha < \pi \). Khi đó, tan α bằng:
A. \(\frac{{\sqrt {21} }}{5}\).
B. \( - \frac{{\sqrt {21} }}{2}\).
C. \(\frac{{\sqrt {21} }}{2}\).
D. \( - \frac{{\sqrt {21} }}{5}\).
Cho \(\cos \alpha = - \frac{2}{5}\) với \(\frac{\pi }{2} < \alpha < \pi \). Khi đó, tan α bằng:
A. \(\frac{{\sqrt {21} }}{5}\).
B. \( - \frac{{\sqrt {21} }}{2}\).
C. \(\frac{{\sqrt {21} }}{2}\).
D. \( - \frac{{\sqrt {21} }}{5}\).
Lời giải
Đáp án đúng là: B
Vì \(\frac{\pi }{2} < \alpha < \pi \) nên tan α < 0.
Do đó, từ \(1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\), ta suy ra
\(\tan \alpha = - \sqrt {\frac{1}{{{{\cos }^2}\alpha }} - 1} = - \sqrt {\frac{1}{{{{\left( { - \frac{2}{5}} \right)}^2}}} - 1} = - \frac{{\sqrt {21} }}{2}\).
Lời giải
Đáp án đúng là: D
Ta có tan α + cot α = 2
Suy ra (tan α + cot α)2 = 22 = 4.
Mà (tan α + cot α)2 = tan2 α + 2tan α . cot α + cot2 α
= tan2 α + 2 . 1 + cot2 α = tan2 α + cot2 α + 2 = 4.
Do đó, tan2 α + cot2 α = 4 – 2 = 2.
Câu 4
Kết quả thu gọn của biểu thức
\(A = \sin \left( {\pi + x} \right) + \cos \left( {\frac{\pi }{2} - x} \right) + \cot \left( {2\pi - x} \right) + \tan \left( {\frac{{3\pi }}{2} + x} \right)\) là:
A. – 2cot x.
B. 2tan x.
C. 2sin x.
D. – 2sin x.
Kết quả thu gọn của biểu thức
\(A = \sin \left( {\pi + x} \right) + \cos \left( {\frac{\pi }{2} - x} \right) + \cot \left( {2\pi - x} \right) + \tan \left( {\frac{{3\pi }}{2} + x} \right)\) là:
A. – 2cot x.
B. 2tan x.
C. 2sin x.
D. – 2sin x.
Lời giải
Đáp án đúng là: A
\(A = \sin \left( {\pi + x} \right) + \cos \left( {\frac{\pi }{2} - x} \right) + \cot \left( {2\pi - x} \right) + \tan \left( {\frac{{3\pi }}{2} + x} \right)\)
\( = - \sin x + \sin x + \cot \left( {\pi + \pi - x} \right) + \tan \left( {\pi + \frac{\pi }{2} + x} \right)\)
\( = \cot \left( {\pi - x} \right) + \tan \left( {\frac{\pi }{2} + x} \right)\)
\( = \cot \left( { - x} \right) + \tan \left( {\pi + x - \frac{\pi }{2}} \right)\)
\( = - \cot x + \tan \left[ { - \left( {\frac{\pi }{2} - x} \right)} \right]\)
\( = - \cot x - \tan \left( {\frac{\pi }{2} - x} \right)\)
\( = - \cot x - \cot x = - 2\cot x\).
Câu 5
Cho tan α = 2. Khi đó giá trị của biểu thức \(A = \frac{{{{\sin }^2}\alpha - 2\sin \alpha .\cos \alpha }}{{{{\cos }^2}\alpha + 3{{\sin }^2}\alpha }}\) bằng:
A. 4.
B. 0.
C. 1.
D. 2.
Cho tan α = 2. Khi đó giá trị của biểu thức \(A = \frac{{{{\sin }^2}\alpha - 2\sin \alpha .\cos \alpha }}{{{{\cos }^2}\alpha + 3{{\sin }^2}\alpha }}\) bằng:
A. 4.
B. 0.
C. 1.
D. 2.
Lời giải
Đáp án đúng là: B
Vì tan α = 2 xác định nên cos α ≠ 0, hay cos2 α ≠ 0, do đó chia cả tử và mẫu của A cho cos2 α ta được:
\(A = \frac{{\frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} - \frac{{2\sin \alpha .\cos \alpha }}{{{{\cos }^2}\alpha }}}}{{\frac{{{{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} + \frac{{3{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }}}} = \frac{{{{\tan }^2}\alpha - 2\tan \alpha }}{{1 + 3{{\tan }^2}\alpha }} = \frac{{{2^2} - 2.2}}{{1 + {{3.2}^2}}} = 0\).
Câu 6
Cho lục giác đều ABCDEF nội tiếp trong đường tròn lượng giác (thứ tự đi từ A đến các đỉnh theo chiều ngược chiều kim đồng hồ). Tính số đo của các góc lượng giác (OA, OB), (OA, OC), (OA, OD), (OA, OE), (OA, OF).
Cho lục giác đều ABCDEF nội tiếp trong đường tròn lượng giác (thứ tự đi từ A đến các đỉnh theo chiều ngược chiều kim đồng hồ). Tính số đo của các góc lượng giác (OA, OB), (OA, OC), (OA, OD), (OA, OE), (OA, OF).
Lời giải

Vì ABCDEF là lục giác đều nên
\(\widehat {AOB} = \widehat {BOC} = \widehat {COD} = \widehat {DOE} = \widehat {EOF} = \widehat {FOA} = \frac{{360^\circ }}{6} = 60^\circ = \frac{\pi }{3}\).
Khi đó, ta có:
\(\left( {OA,OB} \right) = \frac{\pi }{3} + k2\pi \);
\(\left( {OA,OC} \right) = \frac{\pi }{3} + \frac{\pi }{3} + k2\pi = \frac{{2\pi }}{3} + k2\pi \);
\(\left( {OA,OD} \right) = \pi + k2\pi \);
\(\left( {OA,OE} \right) = - \frac{\pi }{3} - \frac{\pi }{3} + k2\pi = - \frac{{2\pi }}{3} + k2\pi \);
\(\left( {OA,OF} \right) = - \frac{\pi }{3} + k2\pi \).
Câu 7
Cho \(\sin \alpha = \frac{1}{3}\) với \(\alpha \in \left( {\frac{\pi }{2};\pi } \right)\). Tính cos α, tanα, cot α.
Cho \(\sin \alpha = \frac{1}{3}\) với \(\alpha \in \left( {\frac{\pi }{2};\pi } \right)\). Tính cos α, tanα, cot α.
Lời giải
Vì \(\alpha \in \left( {\frac{\pi }{2};\pi } \right)\) nên cos α < 0.
Do đó từ sin2 α + cos2 α = 1, suy ra
\(\cos \alpha = - \sqrt {1 - {{\sin }^2}\alpha } = - \sqrt {1 - {{\left( {\frac{1}{3}} \right)}^2}} = - \frac{{2\sqrt 2 }}{3}\).
Khi đó, \[\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\frac{1}{3}}}{{ - \frac{{2\sqrt 2 }}{3}}} = - \frac{1}{{2\sqrt 2 }} = - \frac{{\sqrt 2 }}{4}\];
\(\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{1}{{ - \frac{{\sqrt 2 }}{4}}} = - 2\sqrt 2 \).
Lời giải
Ta có: \(\tan x = \frac{1}{{\cot x}} = \frac{1}{{ - 3}} = - \frac{1}{3}\).
Áp dụng công thức \(1 + {\cot ^2}x = \frac{1}{{{{\sin }^2}x}}\), ta được \({\sin ^2}x = \frac{1}{{1 + {{\cot }^2}x}} = \frac{1}{{1 + {{\left( { - 3} \right)}^2}}} = \frac{1}{{10}}\).
Mà \(\frac{\pi }{2} < x < \pi \) nên sin x > 0. Suy ra \(\sin x = \frac{{\sqrt {10} }}{{10}}\).
Khi đó từ \(\cot x = \frac{{\cos x}}{{\sin x}}\), suy ra cos x = cot x . sin x = \( - 3.\frac{{\sqrt {10} }}{{10}} = - \frac{{3\sqrt {10} }}{{10}}\).
Lời giải
VT = sin4 x + cos4 x
= (sin2 x)2 + (cos2 x)2 + 2sin2 x . cos2 x – 2sin2 x . cos2 x
= (sin2 x + cos2 x)2 – 2sin2 x . cos2 x
= 12 – 2sin2 x . cos2 x = 1 – 2sin2 x . cos2 x = VP (đpcm).
Lời giải
VT = sin6 x + cos6 x
= (sin2 x)3 + (cos2 x)3
= (sin2 x + cos2 x)3 – 3sin2 x cos2 x(sin2 x + cos2 x)
= 13 – 3sin2 x cos2 x . 1
= 1 – 3sin2 x cos2 x (đpcm).Câu 11
Cho tan x = − 2. Tính giá trị của mỗi biểu thức sau:
\(A = \frac{{3\sin x - 5\cos x}}{{4\sin x + \cos x}}\);
Cho tan x = − 2. Tính giá trị của mỗi biểu thức sau:
\(A = \frac{{3\sin x - 5\cos x}}{{4\sin x + \cos x}}\);
Lời giải
Vì tan x xác định nên cos x ≠ 0. Chia cả tử và mẫu của A cho cos x ta được:
\(A = \frac{{3\sin x - 5\cos x}}{{4\sin x + \cos x}}\)\( = \frac{{3\tan x - 5}}{{4\tan x + 1}} = \frac{{3.\left( { - 2} \right) - 5}}{{4.\left( { - 2} \right) + 1}} = \frac{{11}}{7}\).Câu 12
Cho tan x = − 2. Tính giá trị của biểu thức sau:
\(B = \frac{{2{{\sin }^2}x - 3\sin x\cos x - {{\cos }^2}x}}{{{{\sin }^2}x + \sin x\cos x}}\).
Cho tan x = − 2. Tính giá trị của biểu thức sau:
\(B = \frac{{2{{\sin }^2}x - 3\sin x\cos x - {{\cos }^2}x}}{{{{\sin }^2}x + \sin x\cos x}}\).
Lời giải
Vì tan x xác định nên cos2 x khác 0. Chia cả tử và mẫu của B cho cos2 x ta được:
\(B = \frac{{2{{\sin }^2}x - 3\sin x\cos x - {{\cos }^2}x}}{{{{\sin }^2}x + \sin x\cos x}}\)\( = \frac{{2{{\tan }^2}x - 3\tan x - 1}}{{{{\tan }^2}x + \tan x}}\)\( = \frac{{2.{{\left( { - 2} \right)}^2} - 3.\left( { - 2} \right) - 1}}{{{{\left( { - 2} \right)}^2} + \left( { - 2} \right)}} = \frac{{13}}{2}\).
Câu 13
Tính:
A = \({\cos ^2}\frac{\pi }{8} + {\cos ^2}\frac{{3\pi }}{8} + {\cos ^2}\frac{{5\pi }}{8} + {\cos ^2}\frac{{7\pi }}{8}\);
Tính:
A = \({\cos ^2}\frac{\pi }{8} + {\cos ^2}\frac{{3\pi }}{8} + {\cos ^2}\frac{{5\pi }}{8} + {\cos ^2}\frac{{7\pi }}{8}\);
Lời giải
Do \(\cos \frac{{7\pi }}{8} = \cos \left( {\pi - \frac{\pi }{8}} \right) = - \cos \left( { - \frac{\pi }{8}} \right) = - \cos \frac{\pi }{8}\);
\(\cos \frac{{5\pi }}{8} = \cos \left( {\pi - \frac{{3\pi }}{8}} \right) = - \cos \left( { - \frac{{3\pi }}{8}} \right) = - \cos \frac{{3\pi }}{8}\).
Nên A = \({\cos ^2}\frac{\pi }{8} + {\cos ^2}\frac{{3\pi }}{8} + {\cos ^2}\frac{{5\pi }}{8} + {\cos ^2}\frac{{7\pi }}{8}\)
= \({\cos ^2}\frac{\pi }{8} + {\cos ^2}\frac{{3\pi }}{8} + {\left( { - \cos \frac{{3\pi }}{8}} \right)^2} + {\left( { - \cos \frac{\pi }{8}} \right)^2}\)
\( = 2\left( {{{\cos }^2}\frac{\pi }{8} + {{\cos }^2}\frac{{3\pi }}{8}} \right)\)
\( = 2\left[ {{{\cos }^2}\frac{\pi }{8} + {{\sin }^2}\left( {\frac{\pi }{2} - \frac{{3\pi }}{8}} \right)} \right]\)
\( = 2\left( {{{\cos }^2}\frac{\pi }{8} + {{\sin }^2}\frac{\pi }{8}} \right) = 2.1 = 2\).
Câu 14
Tính:
B = \(\sin \frac{\pi }{5} + \sin \frac{{2\pi }}{5} + ... + \sin \frac{{9\pi }}{5}\) (gồm 9 số hạng);
Tính:
B = \(\sin \frac{\pi }{5} + \sin \frac{{2\pi }}{5} + ... + \sin \frac{{9\pi }}{5}\) (gồm 9 số hạng);
Lời giải
Nhận thấy \(\sin \frac{{9\pi }}{5} = \sin \left( { - \frac{\pi }{5} + 2\pi } \right) = \sin \left( { - \frac{\pi }{5}} \right) = - \sin \frac{\pi }{5}\) nên \(\sin \frac{\pi }{5} + \sin \frac{{9\pi }}{5} = 0\).
Tương tự ta có: \(\sin \frac{{2\pi }}{5} + \sin \frac{{8\pi }}{5} = 0,\,\,\sin \frac{{3\pi }}{5} + \sin \frac{{7\pi }}{5} = 0,\,\,\sin \frac{{4\pi }}{5} + \sin \frac{{6\pi }}{5} = 0\).
Suy ra B = \(\sin \frac{\pi }{5} + \sin \frac{{2\pi }}{5} + ... + \sin \frac{{9\pi }}{5}\)
\[ = \left( {\sin \frac{\pi }{5} + \sin \frac{{9\pi }}{5}} \right) + \left( {\sin \frac{{2\pi }}{5} + \sin \frac{{8\pi }}{5}} \right) + \left( {\sin \frac{{3\pi }}{5} + \sin \frac{{7\pi }}{5}} \right) + \left( {\sin \frac{{4\pi }}{5} + \sin \frac{{6\pi }}{5}} \right) + \sin \frac{{5\pi }}{5}\]
\( = 0 + \sin \pi = 0\).
Lời giải
C = tan 1° . tan 2° . tan 3°. ... . tan 89°
= (tan 1° . tan 89°) . (tan 2° . tan 88°) . ... . (tan 44° . tan 46°) . tan 45°
= [tan 1° . cot(90° – 89°)] . [tan 2° . cot(90° – 88°)] . ... . [tan44° . cot(90° – 46°)] . tan 45°
= (tan 1° . cot 1°) . (tan 2° . cot 2°) . ... . (tan 44° . cot 44°) . tan 45°
= 1 . 1 . ... . 1 . 1
= 1.
Lời giải
Sử dụng định lí tổng 3 góc trong tam giác.
Do A + C = π – B nên sin(A + C) = sin(π – B) = sin B.
Vậy sin B = sin(A + C).
Lời giải
Sử dụng định lí tổng 3 góc trong tam giác.
Do A + B + 2C = A + B + C + C = π + C
Nên cos(A + B + 2C) = cos(π + C) = – cos C.
Suy ra cosC = – cos(A + B + 2C).
Lời giải
Ta có: \(\frac{{A + B + C}}{2} = \frac{\pi }{2}\), suy ra \(\frac{{B + C}}{2} = \frac{\pi }{2} - \frac{A}{2}\).
Nên \(\sin \frac{A}{2} = \cos \frac{{B + C}}{2}\).
Câu 19
Chứng minh rằng trong tam giác ABC, ta có:
\(\tan \frac{{A + B - 2C}}{2} = \cot \frac{{3C}}{2}\).
Chứng minh rằng trong tam giác ABC, ta có:
\(\tan \frac{{A + B - 2C}}{2} = \cot \frac{{3C}}{2}\).
Lời giải
Ta có: \(\frac{{A + B - 2C}}{2} = \frac{{A + B + C - 3C}}{2} = \frac{{\pi - 3C}}{2} = \frac{\pi }{2} - \frac{{3C}}{2}\).
Suy ra \(\tan \frac{{A + B - 2C}}{2} = \cot \frac{{3C}}{2}\).
Câu 20
Cho sin α + cos α = \(\frac{1}{3}\) với \( - \frac{\pi }{2} < \alpha < 0\). Tính:
A = sinα . cos α;
Cho sin α + cos α = \(\frac{1}{3}\) với \( - \frac{\pi }{2} < \alpha < 0\). Tính:
A = sinα . cos α;
Lời giải
Do sin α + cos α = \(\frac{1}{3}\) nên (sin α + cos α)2 = \({\left( {\frac{1}{3}} \right)^2} = \frac{1}{9}\).
Mà (sin α + cos α)2 = sin2 α + 2 sin α cos α + cos2 α = 1 + 2 sin α cos α.
Do đó, 1 + 2 sin α cos α = \(\frac{1}{9}\), suy ra A = sinα . cos α = \(\frac{{\frac{1}{9} - 1}}{2} = - \frac{4}{9}\).
Câu 21
Cho sin α + cos α = \(\frac{1}{3}\) với \( - \frac{\pi }{2} < \alpha < 0\). Tính:
B = sin α – cos α;
Cho sin α + cos α = \(\frac{1}{3}\) với \( - \frac{\pi }{2} < \alpha < 0\). Tính:
B = sin α – cos α;
Lời giải
Ta có: B2 = (sin α – cos α)2 = 1 – 2 sin α cos α = \(1 - 2.\left( { - \frac{4}{9}} \right) = 1 + \frac{8}{9} = \frac{{17}}{9}\).
Do \( - \frac{\pi }{2} < \alpha < 0\) nên sin α < 0 và cos α > 0. Do đó sin α – cos α < 0.
Vậy B = \( - \frac{{\sqrt {17} }}{3}\).Câu 22
Cho sin α + cos α = \(\frac{1}{3}\) với \( - \frac{\pi }{2} < \alpha < 0\). Tính:
C = sin³ α + cos³ α;
Cho sin α + cos α = \(\frac{1}{3}\) với \( - \frac{\pi }{2} < \alpha < 0\). Tính:
C = sin³ α + cos³ α;
Lời giải
Ta có:
C = sin³ α + cos³ α = (sin α + cos α)3 – 3 sin α cos α(sin α + cos α)
\( = {\left( {\frac{1}{3}} \right)^3} - 3.\left( { - \frac{4}{9}} \right).\left( {\frac{1}{3}} \right) = \frac{{13}}{{27}}\).
Câu 23
Cho sin α + cos α = \(\frac{1}{3}\) với \( - \frac{\pi }{2} < \alpha < 0\). Tính:
D = sin4 α + cos4 α.
Cho sin α + cos α = \(\frac{1}{3}\) với \( - \frac{\pi }{2} < \alpha < 0\). Tính:
D = sin4 α + cos4 α.
Lời giải
Ta có:
D = sin4 α + cos4 α = 1 – 2sin2 α cos2 α (theo Bài 9a)
= 1 – 2 (sin α cos α)2 = \(1 - 2.{\left( { - \frac{4}{9}} \right)^2} = \frac{{49}}{{81}}\).Câu 24
Một vòng quay Mặt Trời quay mỗi vòng khoảng 15 phút. Tại vị trí quan sát, bạn Linh thấy vòng quay chuyển động theo chiều kim đồng hồ. Khi vòng quay chuyển động được 10 phút, bán kính của vòng quay quét một góc lượng giác có số đo bằng bao nhiêu? (Tính theo đơn vị radian).
Một vòng quay Mặt Trời quay mỗi vòng khoảng 15 phút. Tại vị trí quan sát, bạn Linh thấy vòng quay chuyển động theo chiều kim đồng hồ. Khi vòng quay chuyển động được 10 phút, bán kính của vòng quay quét một góc lượng giác có số đo bằng bao nhiêu? (Tính theo đơn vị radian).
Lời giải
Do vòng quay Mặt Trời quay mỗi vòng khoảng 15 phút và chuyển động theo chiều kim đồng hồ nên sau 15 phút, bán kính của vòng quay quét một góc lượng giác có số đo bằng – 2π (rad).
Do đó, sau 10 phút, bán kính của vòng quay quét một góc lượng giác có số đo bằng \(\frac{{ - 2\pi }}{{15}}.10 = \frac{{ - 4\pi }}{3}\) (rad).
187 Đánh giá
50%
40%
0%
0%
0%