Câu hỏi:
12/07/2024 7,254Trong Hình 11, vị trí cabin mà Bình và Cường ngồi trên vòng quay được đánh dấu bởi điểm B và C.
a) Chứng minh rằng chiều cao từ điểm B đến mặt đất bằng (13 + 10sinα) mét với α là số đo của một góc lượng giác tia đầu OA, tia cuối OB. Tính độ cao của điểm B so với mặt đất khi α = – 30°.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
a) Ta có điểm B là điểm biểu diễn cho góc lượng giác có số đo góc là α trên đường tròn lượng giác có bán kính bằng 10 nên tọa độ điểm B(10cosα; 10sinα).
Vì vậy chiều cao từ điểm B đến mặt đất là: 13 + 10sinα (mét).
Với α = – 30° ta có chiều cao từ điểm B đến mặt đất là: 13 + 10sin.(– 30°) = 8 (mét).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Biểu diễn các giá trị lượng giác sau qua các giá trị lượng giác của góc có số đo từ 0 đến hoặc từ 0 đến 45° và tính:
a) ;
b) ;
c) tan1 020°.
Câu 2:
Thanh OM quay ngược chiều kim đồng hồ quanh trục O của nó trên một mặt phẳng thẳng đứng và in bóng vuông góc xuống mặt đất như Hình 12. Vị trí ban đầu của thanh là OA. Hỏi độ dài bóng O’M’ của OM khi thanh quay được vòng là bao nhiêu, biết độ dài thanh OM là 15 cm? Kết quả làm tròn đến hàng phần mười.
Câu 5:
Khi đạp xe di chuyển, van V của bánh xe quay quanh trục O theo chiều kim đồng hồ với tốc độ góc không đổi là 11 rad/s (Hình 13). Ban đầu van nằm ở vị trí A. Hỏi sau một phút di chuyển , khoảng cách từ van đến mặt đất là bao nhiêu, biết bán kính OA = 58 cm? Giả sử độ dàu của lốp xe không đáng kể. Kết quả làm tròn đến hàng phần mười.
về câu hỏi!