Câu hỏi:
21/07/2023 539Chứng minh rằng nếu m và n nhận các giá trị nguyên tùy ý thì biểu thức
luôn có giá trị là số nguyên chia hết cho 5.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta biến đổi biểu thức K như sau:
K = (5m + 1)(5n – 2) + (5m – 2)(5n + 1) + 4
= (25mn – 10m + 5n – 2) + (25mn + 5m – 10n – 2) + 4
= 50mn – 5m – 5n
= 5(10mn – m – n).
Từ kết quả trên, ta thấy K có dạng K = 5k, trong đó k = 10mn – m – n.
Ta thấy K luôn có giá trị là số nguyên tại mọi giá trị nguyên của m và n.
Do đó K luôn có giá trị là số nguyên chia hết cho 5.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Rút gọn biểu thức sau đây để thấy rằng giá trị của nó không phụ thuộc vào giá trị của biến: (x – 5)(2x + 3) – 2x(x – 3) + x + 7.
Câu 6:
Chứng minh đẳng thức sau:
(2x + y)(2x2 + xy – y2) = (2x – y)(2x2 + 3xy + y2).
về câu hỏi!