Câu hỏi:

27/07/2023 2,249

Cho hình vuông ABCD. Với điểm M nằm giữa C và D, kẻ tia phân giác của góc DAM; nó cắt CD ở N. Đường thẳng qua N vuông góc với AM cắt BC ở P. Tính số đo của góc NAP.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Đường thẳng NP AM cắt AM ở Q.

Do ABCD là hình vuông nên ND AD.

Xét DADN vuông tại D và DAQN vuông tại Q :

AN là cạnh chung,  NAD^=NAQ^ (do AN là tia phân giác của  DAM^)

Do đó ADN = ∆AQN (cạnh huyền – góc nhọn)

Suy ra AD = AQ;

Mà AD = AB nên AQ = AB

Xét DAQP vuông tại Q và DABP vuông tại B có:

Cạnh AP chung; AQ = AB

Do đó AQP = ∆ABP (cạnh huyền – cạnh góc vuông)

Suy ra  QAP^=BAP^.

Ta có:  BAD^=DAN^+NAQ^+QAP^+BAP^ 

Mà  NAD^=NAQ^;  QAP^=BAP^ nên ta có:

 BAD^=2NAQ^+PAQ^=2NAP^

Suy ra  NAP^=12DAB^=1290°=45°.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Xét tam giác ABC vuông cân tại A. Lấy trên cạnh BC hai điểm D, E sao cho BD = DE = EC. Lấy các điểm F, G lần lượt thuộc cạnh AC, AB sao cho FE, GD vuông góc với BC.

Chứng minh tứ giác DEFG là một hình vuông.

Xem đáp án » 27/07/2023 2,711

Câu 2:

Gọi O là giao điểm hai đường chéo của hình bình hành ABCD. Với mỗi tam giác OAB, OBC, OCD, ODA, xét giao điểm ba đường phân giác của tam giác đó. Tại sao bốn điểm vừa vẽ là bốn đỉnh của một hình thoi?

Xem đáp án » 27/07/2023 2,705

Câu 3:

Chứng minh hình bình hành có hai đường cao xuất phát từ một đỉnh bằng nhau là một hình thoi.

Xem đáp án » 27/07/2023 2,151

Câu 4:

Cho hình vuông ABCD với tâm O và có cạnh bằng 2 cm. Hai tia Ox, Oy tạo thành góc vuông. Tính diện tích của phần hình vuông nằm bên trong góc xOy.

Xem đáp án » 27/07/2023 1,962

Bình luận


Bình luận