Câu hỏi:
27/07/2023 2,001Cho hình vuông ABCD. Với điểm M nằm giữa C và D, kẻ tia phân giác của góc DAM; nó cắt CD ở N. Đường thẳng qua N vuông góc với AM cắt BC ở P. Tính số đo của góc NAP.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đường thẳng NP ⊥ AM cắt AM ở Q.
Do ABCD là hình vuông nên ND ⊥ AD.
Xét DADN vuông tại D và DAQN vuông tại Q có:
AN là cạnh chung, (do AN là tia phân giác của )
Do đó ∆ADN = ∆AQN (cạnh huyền – góc nhọn)
Suy ra AD = AQ;
Mà AD = AB nên AQ = AB
Xét DAQP vuông tại Q và DABP vuông tại B có:
Cạnh AP chung; AQ = AB
Do đó ∆AQP = ∆ABP (cạnh huyền – cạnh góc vuông)
Suy ra .
Ta có:
Mà nên ta có:
Suy ra
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Gọi O là giao điểm hai đường chéo của hình bình hành ABCD. Với mỗi tam giác OAB, OBC, OCD, ODA, xét giao điểm ba đường phân giác của tam giác đó. Tại sao bốn điểm vừa vẽ là bốn đỉnh của một hình thoi?
Câu 2:
Chứng minh hình bình hành có hai đường cao xuất phát từ một đỉnh bằng nhau là một hình thoi.
Câu 3:
Xét tam giác ABC vuông cân tại A. Lấy trên cạnh BC hai điểm D, E sao cho BD = DE = EC. Lấy các điểm F, G lần lượt thuộc cạnh AC, AB sao cho FE, GD vuông góc với BC.
Chứng minh tứ giác DEFG là một hình vuông.
Câu 4:
Cho hình vuông ABCD với tâm O và có cạnh bằng 2 cm. Hai tia Ox, Oy tạo thành góc vuông. Tính diện tích của phần hình vuông nằm bên trong góc xOy.
về câu hỏi!