Câu hỏi:
27/07/2023 1,386Cho hình vuông ABCD với tâm O và có cạnh bằng 2 cm. Hai tia Ox, Oy tạo thành góc vuông. Tính diện tích của phần hình vuông nằm bên trong góc xOy.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Tia Ox phải cắt một cạnh của hình vuông, giả sử Ox cắt cạnh AB tại M.
• Khi M trùng với A hay B thì tia Oy phải qua một đỉnh của hình vuông và dễ thấy phần hình vuông nằm trong góc xOy là một phần tư của hình vuông.
• Khi M nằm giữa A và B thì tia Oy phải cắt cạnh BC hoặc cạnh AD; giả sử Oy cắt BC tại N thì N nằm giữa B và C.
Do ABCD là hình vuông nên AC và BD là các đường phân giác các góc của hình vuông, BD ⊥ AC.
Suy ra (cùng phụ với )
Ta có: ,
Suy ra
Xét ∆OAM và ∆OBN có:
; OA = OB;
Do đó ∆OAM = ∆OBN (g.c.g), nên hai tam giác này có cùng diện tích.
Ta có: diện tích phần hình vuông nằm trong góc xOy là diện tích tứ giác OMBN
Mà SOMBN = SOBM + SOBN; SOAB = SOAM + SOBM
Suy ra SOMBN = SOAB
Tức diện tích phần hình vuông nằm trong góc xOy bằng diện tích hình vuông.
• Cũng lập luận tương tự khi N nằm giữa A và D.
Vậy trong mọi trường hợp diện tích cần tìm bằng .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Gọi O là giao điểm hai đường chéo của hình bình hành ABCD. Với mỗi tam giác OAB, OBC, OCD, ODA, xét giao điểm ba đường phân giác của tam giác đó. Tại sao bốn điểm vừa vẽ là bốn đỉnh của một hình thoi?
Câu 2:
Chứng minh hình bình hành có hai đường cao xuất phát từ một đỉnh bằng nhau là một hình thoi.
Câu 3:
Cho hình vuông ABCD. Với điểm M nằm giữa C và D, kẻ tia phân giác của góc DAM; nó cắt CD ở N. Đường thẳng qua N vuông góc với AM cắt BC ở P. Tính số đo của góc NAP.
Câu 4:
Xét tam giác ABC vuông cân tại A. Lấy trên cạnh BC hai điểm D, E sao cho BD = DE = EC. Lấy các điểm F, G lần lượt thuộc cạnh AC, AB sao cho FE, GD vuông góc với BC.
Chứng minh tứ giác DEFG là một hình vuông.
về câu hỏi!