Câu hỏi:

27/07/2023 2,725

Xét tam giác ABC vuông cân tại A. Lấy trên cạnh BC hai điểm D, E sao cho BD = DE = EC. Lấy các điểm F, G lần lượt thuộc cạnh AC, AB sao cho FE, GD vuông góc với BC.

Chứng minh tứ giác DEFG là một hình vuông.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Do ∆ABC vuông cân tại A nên  B^=C^=45°.

Xét ∆GBD vuông tại D và ∆EFC vuông tại E có:

BD = EC;  B^=C^

Do đó ∆GBD = ∆FCE (cạnh góc vuông – góc nhọn kề)

Suy ra  DGB^=EFC^

Mà  B^+DGB^=90° nên  DGB^=90°B^=90°45°=45°

Do đó  DGB^=EFC^=45°

Suy ra ∆GBD vuông cân tại D và ∆EFC vuông cân tại E.

Vì vậy GD = BD, EF = EC.

Mà  BD=DE=EC=13BC

Suy ra GD = DE = EF.

Do GD BC, EF BC nên GD // EF

Tứ giác GDEF có GD // EF, GD = EF nên GDEF là hình chữ nhật.

Lại GD và DE là hai cạnh kề của hình chữ nhật GDEF bằng nhau nên GDEF là hình vuông.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Gọi O là giao điểm hai đường chéo của hình bình hành ABCD. Với mỗi tam giác OAB, OBC, OCD, ODA, xét giao điểm ba đường phân giác của tam giác đó. Tại sao bốn điểm vừa vẽ là bốn đỉnh của một hình thoi?

Xem đáp án » 27/07/2023 2,711

Câu 2:

Cho hình vuông ABCD. Với điểm M nằm giữa C và D, kẻ tia phân giác của góc DAM; nó cắt CD ở N. Đường thẳng qua N vuông góc với AM cắt BC ở P. Tính số đo của góc NAP.

Xem đáp án » 27/07/2023 2,264

Câu 3:

Chứng minh hình bình hành có hai đường cao xuất phát từ một đỉnh bằng nhau là một hình thoi.

Xem đáp án » 27/07/2023 2,154

Câu 4:

Cho hình vuông ABCD với tâm O và có cạnh bằng 2 cm. Hai tia Ox, Oy tạo thành góc vuông. Tính diện tích của phần hình vuông nằm bên trong góc xOy.

Xem đáp án » 27/07/2023 1,971

Bình luận


Bình luận