Câu hỏi:
13/07/2024 1,545Cho hình bình hành ABCD có O là giao điểm của hai đường chéo. Lấy các điểm M, N, P, Q lần lượt là trung điểm của AO, BO, CO, DO.
a) Chứng minh tứ giác MNPQ là hình bình hành.
b) Chứng minh tứ giác ANCQ là hình bình hành.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Xét ∆AOB có M, N lần lượt là trung điểm của AO, BO.
Theo bài 4, trang 63, SBT Toán 8 Tập Một, ta có: MN // AB; (1)
Tương tự, xét ∆OCD ta cũng có PQ // CD; (2)
Mà AB // CD; AB = CD (do ABCD là hình bình hành). (3)
Từ (1), (2) và (3) suy ra MN // PQ, MN = PQ.
Vậy tứ giác MNPQ là hình bình hành.
b) Xét ∆ANB và ∆CQD có:
AB = CD (ABCD là hình bình hành);
(hai góc so le trong do AB // CD);
(vì OB = OD, NO = NB, QO = QD)
Do đó ∆ANB = ∆CQD (c.g.c). Suy ra AN = CQ. (4)
Xét ∆AQD và ∆CNB có:
AD = BC (do ABCD là hình bình hành);
(hai góc so le trong do AD // BC);
.
Do đó ∆AQD = ∆CNB (c.g.c). Suy ra AQ = CN. (5)
Từ (4) và (5) suy ra ANCQ là hình bình hành.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chữ nhật ABCD có AB = 2BC. Gọi I là trung điểm của AB và K là trung điểm của CD. Chứng minh:
a) AIKD và BIKC là hình vuông.
b) và
Câu 2:
Cho hình bình hành ABCD. Gọi DE, BK lần lượt là đường phân giác của hai góc (E ∈ AB, K ∈ CD).
a) Chứng minh DE // BK.
b) Giả sử DE ⊥ AB. Chứng minh DA = DB.
c) Trong trường hợp DE ⊥ AB, tìm số đo của để tứ giác DEBK là hình vuông.
Câu 3:
Cho hình bình hành ABCD. Trên đường chéo BD lấy hai điểm M và N sao cho BM = DN.
a) Chứng minh tứ giác AMCN là hình bình hành.
b) Xác định vị trí của điểm M để tia AM cắt BC tại trung điểm của BC.
Câu 4:
Ba số nào sau đây không thể là độ dài ba cạnh của một tam giác vuông?
A. 3; 4; 5.
B. 5; 12; 13.
C. 7; 24; 25.
D. 9; 40; 42.
Câu 5:
Cho hình bình hành MNPQ có O là giao điểm của hai đường chéo. Biết MN = 6, OM = 3, ON = 4. Độ dài của MP, NQ, PQ lần lượt là
A. 6; 8; 6.
B. 8; 6; 6.
C. 6; 6; 8.
D. 8; 8; 6.
Câu 6:
Cho tam giác ABC cân tại A có BC = 6 cm. Gọi M, N, P lần lượt là trung điểm của AB, AC, BC.
a) Tính độ dài MN. Chứng minh MBCN là hình thang cân.
b) Gọi K là điểm đối xứng của B qua N. Chứng minh tứ giác ABCK là hình bình hành.
c) Gọi H là điểm đối xứng của P qua M. Chứng minh AHBP là hình chữ nhật.
d) Chứng minh AMPN là hình thoi.
Câu 7:
Cho hình thang cân ABCD có AB // CD, DB là tia phân giác của góc D, DB ⊥ BC. Biết AB = 4 cm. Tính chu vi hình thang đó.
về câu hỏi!