Câu hỏi:
29/10/2023 1,121Bác Minh muốn thay chiếc ti vi có chiều ngang của màn hình là 72 cm (loại 32 inch) bằng chiếc ti vi mới loại 55 inch có cùng tỉ lệ khung hình (tỉ lệ giữa hai kích thước màn hình). Hỏi nếu khoảng trống đặt ti vi là một hình vuông cạnh 1 m thì có thể đặt chiếc tivi mới vào đó không?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
- Gọi chiều ngang của chiếc ti vi mới là x (m).
Xét hai tam giác vuông lần lượt có các cạnh góc vuông là hai cạnh (nằm ngang và thẳng đứng) của màn hình hai chiếc tivi 32 inch và 55 inch. Đường chéo của chúng có độ dài lần lượt là 32 inch và 55 inch. Hai tam giác vuông này đồng dạng với nhau vì có hai cặp cạnh góc vuông tỉ lệ. Do đó cm = 1,2375 m > 1 m.
Vậy không thể đặt vừa chiếc ti vi 55 inch vào khoảng trống hình vuông cạnh 1 m.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một người đo chiều cao của một cái cây bằng cách chôn một chiếc cọc xuống đất, cọc cao 2,4 m và cách vị trí gốc cây 19 m. Người đo đứng cách xa chiếc cọc 1 m và nhìn thấy đỉnh cọc thẳng với đỉnh của cây. Hãy tính chiều cao của cây, biết rằng khoảng cách từ chân đến mắt người ấy là 1,6 m (H.9.49).
Câu 2:
Cho hai hình chữ nhật ABCD và A'B'C'D' thỏa mãn AC = 3AB, B′D′ = 3A′B′.
a) Chứng minh rằng ΔABC ∽ ΔA'B'C'.
b) Nếu A'B' = 2AB và diện tích hình chữ nhật ABCD là 2 m2 thì diện tích hình chữ nhật A'B'C'D' là bao nhiêu?
Câu 3:
Một người ở vị trí điểm A muốn đo khoảng cách đến điểm B ở bên kia sông mà không thể qua sông được. Sử dụng giác kế, người đó xác định được một điểm M trên bờ sông sao cho AM = 2 m, AM vuông góc với AB và đo được số đo góc AMB. Tiếp theo, người đó vẽ trên giấy tam giác A'M'B' vuông tại A' có A'M' = 1 cm, và đo được A'B' = 5 cm (H.9.56). Hỏi khoảng cách từ A đến B là bao nhiêu mét?
Câu 4:
Một ngôi nhà với hai mái lệch AB, CD được thiết kế như Hình 9.54 sao cho CD = 6 m, AB = 4 m, HA = 2 m, AC = 1 m. Chứng tỏ rằng .
Câu 5:
Cho góc nhọn xOy, các điểm A, N nằm trên tia Ox, các điểm B, M nằm trên tia Oy sao cho AM, BN lần lượt vuông góc với Oy, Ox. Chứng minh rằng ∆OAM ∽∆OBN.
Câu 7:
Cho ΔA'B'C' ∽ ΔABC theo tỉ số k. Gọi A'H' và AH lần lượt là các đường cao đỉnh A' và A của tam giác A'B'C' và tam giác ABC. Chứng minh rằng:
a) .
về câu hỏi!