Câu hỏi:

13/07/2024 8,795

Hai đường trung tuyến BM, CN của tam giác ABC cắt nhau tại điểm G (H.9.75). Chứng minh rằng tam giác GMN đồng dạng với tam giác GBC và tìm tỉ số đồng dạng.

Hai đường trung tuyến BM, CN của tam giác ABC cắt nhau tại điểm G (H.9.75). Chứng minh rằng (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì BM, CN là các đường trung tuyến của tam giác ABC nên M, N lần lượt là trung điểm của AC, AB.

Suy ra MN là đường trung bình của tam giác ABC.

Do đó, MN // BC.

Suy ra GMN^=GBC^ (hai góc ở vị trí so le trong).

Mặt khác NGM^=CGB^ (hai góc đối đỉnh).

Do đó, ∆GMN ∆GBC (g.g).

Vì MN là đường trung bình của tam giác ABC nên BC = 2MN.  

Khi đó, GNGC=GMGB=MNBC=12.

Vậy ∆GMN ∆GBC với tỉ số đồng dạng bằng 12.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Xét tam giác AHB vuông tại H, có:

AH2 + HB2 = AB2 (định lý Pythagore)

Suy ra AB2 = 122 + 162 = 400.

Suy ra AB = 20 cm.

Tương tự, có: AC2 = AH2 + CH2 (áp dụng định lý Pythagore trong tam giác vuông AHC).

Suy ra AC2 = 122 + 92 = 225.

Suy ra AC = 15 cm.

Có BC = CH + BH = 9 + 16 = 25 cm.

Trong tam giác ABC, nhận thấy AB2 + AC2 = BC2 (do 202 + 152 = 252 = 625).

Suy ra tam giác ABC vuông tại A (định lí Pythagore đảo).

Lời giải

Đáp án đúng là: B

Xét đáp án B ta thấy 62 + 82 = 102 (= 100) nên bộ ba này tạo thành tam giác vuông.

(theo định lí Pythagore đảo).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP