Câu hỏi:
13/07/2024 5,970Cho tứ diện đều ABCD cạnh a. Gọi K là trung điểm CD. Tính góc giữa hai đường thẳng AK và BC.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Gọi H là trung điểm của BD.
Ta có: K là trung điểm của CD.
Nên HK là đường trung bình tam giác BCD
HK // BC; HK =
(AK, BC) = (AK, HK)
Xét tam giác ABC đều có H là trung điểm của BC AH =
Xét tam giác ACD đều có K là trung điểm của CD AK =
Xét tam giác AHK:
Vậy (AK, BC) =
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho hình hộp ABCD.A′B′C′D′ có 6 mặt đều là hình vuông M, N, E, F lần lượt là trung điểm các cạnh BC, BA, AA′, A′D′. Tính góc giữa các cặp đường thẳng:
a) MN và DD′;
Câu 3:
Cho hình chóp S.ABC có SA = SB = SC = a, Cho I và J lần lượt là trung điểm của SA và BC. Chứng minh rằng IJ ⊥ SA và IJ ⊥ BC.
Câu 4:
Cho hình chóp S.ABCD có đáy là hình thoi ABCD cạnh a. Cho biết SA = , SA ⊥ AB và SA ⊥ AD. Tính góc giữa SB và CD, SD và CB.
Câu 5:
Cho hình hộp ABCD.A′B′C′D′ có 6 mặt đều là hình vuông.
a) Tìm các đường thẳng đi qua hai đỉnh của hình lập phương và vuông góc với AC.
Câu 6:
Cho hình hộp ABCD.A′B′C′D′ có 6 mặt đều là hình vuông. Nêu nhận xét về góc giữa các cặp đường thẳng:
a) AB và BB′;
về câu hỏi!