Câu hỏi:
02/11/2023 570Cho hình chóp S.ABC có tam giác vuông cân tại B, AC = , mặt phẳng (SAC) vuông góc với mặt đáy (ABC). Các mặt bên (SAB), (SBC) tạo với mặt đáy các góc bằng nhau và bằng 60°. Tính theo a thể tích V của khối chóp S.ABC.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có: (SAC) ^ (ABC) và (SAC) Ç (ABC) = AC.
Trong mặt phẳng (SAC), vẽ SH ^ AC (H Î AC) thì SH ^ (ABC).
Gọi I, K lần lượt là hình chiếu vuông góc của H lên cạnh AB và BC.
Khi đó, ta có
Mà nên HI = HK.
Suy ra tử giác BIHK là hình vuông nên H là trung điểm cạnh AC.
Khi đó tử giác BIHK là hình vuông cạnh
SH = HI . tan 60° =
Vậy thể tích V của khối chóp S.ABC là
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABC có đáy ABC là tam giác đều canh a, cạnh bên SA vuông góc với đáy. Tính khoảng cách từ điểm A đến mặt phẳng (SBC) theo a, biết SA =
Câu 2:
Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD) và SA = , đáy ABCD là hình thang vuông tại A và B có AB = a, AD = 3a, BC = a. Tính thể tích khối chóp S.BCD theo a.
Câu 3:
Cho hình lập phương cạnh a. Gọi M, N lần lượt là trung điểm của AC và B'C'. Tính khoảng cách giữa hai đường thẳng MN và B'D'.
Câu 4:
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 3a, cạnh bên bằng 2a. Gọi G là trọng tâm của tam giác ABC, M là trung điểm của SC.
a) Tính khoảng cách từ S đến mặt phẳng (ABC).
b) Tính khoảng cách từ M đến mặt phẳng (SAG).
Câu 6:
Tính thể tích một cái sọt đựng đồ có dạng hình chóp cụt tứ giác đều, đáy lớn có cạnh bằng 80 cm, đáy nhỏ có cạnh bằng 40 cm và cạnh bên bằng 80 cm.
về câu hỏi!