Cho tam giác ABC và điểm D trên cạnh BC sao cho \[\frac{{BD}}{{BC}} = \frac{3}{4}\], điểm E trên đoạn AD sao cho \[\frac{{AE}}{{AD}} = \frac{1}{3}\]. Gọi K là giao điểm của BE và AC. Tính tỉ số \[\frac{{AK}}{{KC}}\].
Cho tam giác ABC và điểm D trên cạnh BC sao cho \[\frac{{BD}}{{BC}} = \frac{3}{4}\], điểm E trên đoạn AD sao cho \[\frac{{AE}}{{AD}} = \frac{1}{3}\]. Gọi K là giao điểm của BE và AC. Tính tỉ số \[\frac{{AK}}{{KC}}\].

Quảng cáo
Trả lời:
Kẻ DM // BK (I ∈ AC)
Ta có \[\frac{{AE}}{{AD}} = \frac{1}{3}\], suy ra AE = \[\frac{1}{3}\]AD.
Mặt khác AE + ED = AD, nên ED = \[\frac{2}{3}\]AD.
Suy ra \[\frac{{AE}}{{ED}} = \frac{1}{2}\].
• Xét ∆ADI có DM // EK (vì DI // BK ) nên theo định lí Thalès, ta có
\[\frac{{AK}}{{KM}} = \frac{{AE}}{{ED}} = \frac{1}{2}\].
• Xét ∆KBC có DM // BK nên theo định lí Thalès, ta có
\[\frac{{KM}}{{KC}} = \frac{{BD}}{{BC}}\]= \[\frac{3}{4}\].
Do đó \[\frac{{AK}}{{KC}} = \frac{{AK}}{{KI}} \cdot \frac{{KI}}{{KC}} = \frac{1}{2} \cdot \frac{3}{4} = \frac{3}{8}\].
Vậy \[\frac{{AK}}{{KC}} = \frac{3}{8}\].
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có BM = AB – AM = 9 – 3 = 6 (cm)
Xét ∆ABC có MN // BC nên theo định lí Thalès, ta có \[\frac{{AM}}{{BM}} = \frac{{AN}}{{NC}}\].
Suy ra NC = \[\frac{{AN.BM}}{{AM}}\]= \[\frac{{4.6}}{3}\]= 8 (cm)
Xét ∆AMN vuông tại A, áp dụng định lý Pythagore, ta có:
MN2 = AM2 + AN2 = 32 + 42 = 25.
Do đó MN = 5 cm.
Xét ∆ABC có MN // BC, theo hệ quả của định lí Thalès, ta có \[\frac{{MN}}{{BC}} = \frac{{AM}}{{AB}}\].
Suy ra BC = \[\frac{{MN.AB}}{{AM}}\]= \[\frac{{5.9}}{3}\]= 15 (cm).
Vậy NC = 8 cm, MN = 5 cm, BC = 15 cm.
Lời giải
Lấy điểm F trên tia AM sao cho M là trung điểm của EF.
Tứ giác MEFC có hai hai đường chéo BC và EF cắt nhau tại trung điểm của mỗi đường nên tứ giác MEFC là hình bình hành.
Suy ra CF // BE và CF // EN.
Ta có AE = 3EM và ME = MF (vì M là trung điểm của EF).
Khi đó, \[\frac{{AE}}{{EF}} = \frac{3}{2}\].
Xét ∆ACF có CF // EN nên theo định lí Thalès, ta có: \[\frac{{AN}}{{NC}} = \frac{{AE}}{{EF}} = \frac{3}{2}\].
Vậy \[\frac{{AN}}{{NC}} = \frac{3}{2}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

