b) Từ kết quả trên, tìm số phần ăn sao cho chi phí trung bình của một phần ăn là thấp nhất.
b) Từ kết quả trên, tìm số phần ăn sao cho chi phí trung bình của một phần ăn là thấp nhất.
Quảng cáo
Trả lời:
b) Từ câu a), ta thấy trên đoạn [30; 120], giá trị nhỏ nhất của hàm số bằng 10 tại x = 60.
Vậy số phần ăn là 60 thì chi phí trung bình của một phần ăn là thấp nhất.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử hàm số bậc ba cần tìm có dạng y = f(x) = ax3 + bx2 + cx + d (a ≠ 0).
Quan sát Hình 3, ta thấy đồ thị hàm số đi qua các điểm (0; 5), (1; 1) và (3; 5).
Với x = 0 thì y = 5, thay vào hàm số ta suy ra d = 5.
Khi đó hàm số trở thành y = f(x) = ax3 + bx2 + cx + 5.
Với x = 1 thì y = 1, thay vào hàm số ta được a + b + c + 5 = 1 (1).
Ta thấy đồ thị hàm số có hai điểm cực trị là (1; 1) và (3; 5), tức là phương trình y' = 0 có hai nghiệm là x = 1 và x = 3.
Ta có y' = 3ax2 + 2bx + c.
Với x = 1 thì y' = 0 nên ta có 3a + 2b + c = 0 (2).
Với x = 3 thì y' = 0 nên ta có 27a + 6b + c = 0 (3).
Từ (1), (2) và (3) ta suy ra a = – 1; b = 6; c = – 9.
Vậy hàm số cần tìm là y = f(x) = – x3 + 6x2 – 9x + 5.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.