Câu hỏi:
12/07/2024 2,132a) Nêu định nghĩa hàm số đồng biến, hàm số nghịch biến trên tập K ⊂ ℝ, trong đó K là một khoảng, đoạn hoặc nửa khoảng.
b) Cho hàm số y = f(x) = x2 có đồ thị như Hình 2.
Xác định khoảng đồng biến, nghịch biến của hàm số đó.
Xét dấu của đạo hàm f'(x) = 2x.
Nêu mối liên hệ giữa sự đồng biến, nghịch biến của hàm số f(x) = x2 và dấu của đạo hàm f'(x) = 2x trên mỗi khoảng (– ∞; 0), (0; + ∞).
Hoàn thành bảng biến thiên sau
Quảng cáo
Trả lời:
a) Cho K là một khoảng, đoạn hoặc nửa khoảng. Giả sử y = f(x) là hàm số xác định trên K. Ta nói
+ Hàm số y = f(x) được gọi là hàm số đồng biến trên K nếu với mọi x1, x2 thuộc K và x1 < x2 thì f(x1) < f(x2).
+ Hàm số y = f(x) được gọi là hàm số nghịch biến trên K nếu với mọi x1, x2 thuộc K và x1 < x2 thì f(x1) > f(x2).
Lưu ý: Nếu một hàm số đồng biến trên K thì trên đó đồ thị của nó đi lên từ trái qua phải; nếu một hàm số nghịch biến trên K thì trên đó đồ thị của nó đi xuống từ trái qua phải.
b)
Quan sát Hình 2 ta thấy
+ Trên khoảng (– ∞; 0), đồ thị hàm số y = f(x) = x2 đi xuống từ trái qua phải nên hàm số này nghịch biến trên khoảng (– ∞; 0).
+ Trên khoảng (0; + ∞), đồ thị hàm số y = f(x) = x2 đi lên từ trái qua phải nên hàm số này đồng biến trên khoảng (0; + ∞).
Ta có 2x > 0 với mọi x ∈ (0; + ∞) và 2x < 0 với mọi x ∈ (– ∞; 0).
Do đó, f'(x) > 0 với mọi x ∈ (0; + ∞) và f'(x) < 0 với mọi x ∈ (– ∞; 0).
Mối liên hệ:
+ Trên khoảng (– ∞; 0), hàm số f(x) nghịch biến và f'(x) < 0.
+ Trên khoảng (0; + ∞), hàm số f(x) đồng biến và f'(x) > 0.
Với x = 0, ta có f(0) = 02 = 0 và f'(0) = 2 ∙ 0 = 0.
Bảng biến thiên:
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét hàm số vận tốc của tàu con thoi v(t) = 0,001302t3 – 0,09029t2 + 23 với t ∈ [0; 126].
Gia tốc của tàu con thoi là a(t) = v'(t) = 0,003906t2 – 0,18058t.
Ta có a'(t) = 0,007812t – 0,18058
a'(t) = 0 ⇔ t ≈ 23.
Bảng biến thiên của hàm số a(t) như sau:
Vậy gia tốc của tàu con thoi sẽ tăng trong khoảng thời gian (23 s; 126 s) tính từ thời điểm cất cánh cho đến khi tên lửa đẩy được phóng đi.
Lời giải
Ta có V(T) = 999,87 – 0,06426T + 0,0085043T2 – 0,0000679T3 với T ∈ [0; 30].
V'(T) = – 0,06426 + 0,0170086T – 0,0002037T2
V'(T) = 0 ⇔ T ≈ 4 hoặc T ≈ 79,5. Vì T ∈ [0; 30] nên T ≈ 4.
Ta có bảng biến thiên của hàm số như sau:
Vậy thể tích V(T) giảm trong khoảng nhiệt độ (0 ℃; 4 ℃).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)