Câu hỏi:

12/07/2024 166

Anh Pi hỏi: “Có thể nói gì về nghiệm của phương trình bậc hai ax2 + bx + c = 0 nếu a và c trái dấu?”

Em hãy trả lời câu hỏi của anh Pi.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0).

Ta có ∆ = b2 – 4ac.

Do a và c trái dấu nên ac < 0, nên – 4ac > 0, suy ra b2 – 4ac > 0 hay ∆ > 0.

Khi đó, phương trình bậc hai ax2 + bx + c = 0 luôn có hai nghiệm phân biệt.

Vậy phương trình bậc hai ax2 + bx + c = 0 luôn có hai nghiệm phân biệt nếu a và c trái dấu.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Sau bài học này, chúng ta sẽ giải được bài toán trên như sau:

Theo bài, ta có điều kiện của x là 0 < x < 8.

Chiều dài của bể bơi là: 28 – x – x = 28 – 2x (m).

Chiều rộng của bể bơi là: 16 – x – x = 16 – 2x (m).

Diện tích của bể bơi theo x là:

S = (28 – 2x)(16 – 2x) = 448 – 56x – 32x + 4x2 = 4x2 – 88x + 448 (m2).

Theo bài, S = 288 m2 nên ta có phương trình: 4x2 – 88x + 448 = 288.

Giải phương trình:

4x2 – 88x + 448 = 288

4x2 – 88x + 160 = 0

x2 – 22x + 40 = 0.

Phương trình trên có a = 1; b’ = –11; c = 40 và ∆’ = (–11)2 – 1.40 = 81 nên

Do đó, phương trình trên có hai nghiệm phân biệt

Ta thấy chỉ có x = 2 thỏa mãn điều kiện 0 < x < 16.

Vậy bề rộng của đường đi là 2 mét để diện tích của bể bơi là 288 m2.

Lời giải

Ta có ∆ = (–5)2 – 4.2.1 = 17 > 0.

Do đó, phương trình có hai nghiệm phân biệt:

 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay