Câu hỏi:

12/07/2024 401

Một mảnh vườn hình chữ nhật có chiều rộng ngắn hơn chiều dài 6 m và có diện tích là 280 m2. Tính các kích thước của mảnh vườn đó.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi chiều rộng mảnh vườn hình chữ nhật là x (m) (x > 0).

Chiều rộng ngắn hơn chiều dài 6 m nên chiều dài mảnh vườn là x + 6 (m).

Diện tích mảnh vườn là: x(x + 6) (m2).

Theo bài, mảnh vườn có diện tích là 280 m2 nên ta có phương trình:

x(x + 6) = 280.

x2 + 6x – 280 = 0.

Ta có ∆’ = 32 – 1.(–280) = 289 > 0 và

Do đó, phương trình có hai nghiệm phân biệt:

x1 = –3 + 17 = 14, x2 = –3 – 17 = –20.

Ta thấy chỉ có giá trị x1 = 14 thỏa mãn điều kiện x > 0.

Vậy chiều rộng mảnh vườn là 14 m và chiều dài mảnh vườn là 14 + 6 = 20 (m).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Sau bài học này, chúng ta sẽ giải được bài toán trên như sau:

Theo bài, ta có điều kiện của x là 0 < x < 8.

Chiều dài của bể bơi là: 28 – x – x = 28 – 2x (m).

Chiều rộng của bể bơi là: 16 – x – x = 16 – 2x (m).

Diện tích của bể bơi theo x là:

S = (28 – 2x)(16 – 2x) = 448 – 56x – 32x + 4x2 = 4x2 – 88x + 448 (m2).

Theo bài, S = 288 m2 nên ta có phương trình: 4x2 – 88x + 448 = 288.

Giải phương trình:

4x2 – 88x + 448 = 288

4x2 – 88x + 160 = 0

x2 – 22x + 40 = 0.

Phương trình trên có a = 1; b’ = –11; c = 40 và ∆’ = (–11)2 – 1.40 = 81 nên

Do đó, phương trình trên có hai nghiệm phân biệt

Ta thấy chỉ có x = 2 thỏa mãn điều kiện 0 < x < 16.

Vậy bề rộng của đường đi là 2 mét để diện tích của bể bơi là 288 m2.

Lời giải

Ta có ∆ = (–5)2 – 4.2.1 = 17 > 0.

Do đó, phương trình có hai nghiệm phân biệt:

 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay