Câu hỏi:

13/07/2024 2,253

Nhu cầu của khách hàng đối với một loại áo phông tại một cửa hàng được cho bởi phương trình p = 1000,02x, trong đó p là giá tiền của mỗi chiếc áo (nghìn đồng) và x là số lượng áo phông bán được. Doanh thu R (nghìn đồng) khi bán được x chiếc áo phông là:

R = xp = x(1000,02x).

Hỏi cần phải bán được bao nhiêu chiếc áo phông để doanh thu đạt 120 triệu đồng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đổi 120 triệu đồng = 120 000 nghìn đồng.

Vì doanh thu đạt 120 triệu đồng nên R = 120 000 (nghìn đồng).

Thay R = 120 000 vào R = xp = x(100 – 0,02x), ta được:

x(100 – 0,02x) = 120 000

100x – 0,02x2 = 120 000

0,02x2 – 100x + 120 000 = 0.

Ta có ∆’ = (–50)2 – 0,02.120 000 = 100 > 0 và

Suy ra phương trình có hai nghiệm phân biệt:

Vậy phải bán 3 000 chiếc áo với giá 100 – 0,02.3 000 = 40 nghìn đồng hoặc bán 2 000 chiếc áo với giá 100 – 0,02.2 000 = 60 nghìn đồng.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi x (cm) là độ dài cạnh đáy (x > 0).

Diện tích mặt đáy hình vuông là: x2 (cm2).

Diện tích xung quanh là: 4x . 10 = 40x (cm2).

Tổng diện tích xung quanh và diện tích đáy là: x2 + 40x (cm2).

Theo bài, tổng diện tích xung quanh và diện tích đáy là 800 cm2 nên ta có phương trình:

x2 + 40x = 800

x2 + 40x – 800 = 0.

Ta có: ∆’ = 202 – 1.(–800) = 1 200 > 0 và

Suy ra phương trình có hai nghiệm phân biệt:

 (thỏa mãn điều kiện);

 (loại).

Vậy độ dài cạnh đáy của chiếc hộp khoảng 14,64 cm.

Lời giải

Xét phương trình bậc hai x2 – 5x + 3 = 0∆ = (–5)2 – 4.1.3 = 13 > 0 nên phương trình có hai nghiệm phân biệt x1, x2.

Theo định lí Viète ta có:

 

a) Ta có:  

Suy ra

b) Ta có:

Chú ý: Ta cũng có thể tính giá trị của (x1 – x2)2 như sau:

               

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay