Câu hỏi:

12/07/2024 5,280 Lưu

Cho hàm số y = .

a) Đồ th hàm số có tiệm cận đứng là đường thẳng x = 1.

Đ

S

b) Đồ thị hàm số có tiệm cận ngang là đường thẳng y = 3.

Đ

S

c) Điểm M nằm trên đồ thị hàm số có hoành độ x0 ≠ 1 thì tung độ y0 = −3 − .

Đ

S

d) Tích khoảng cách từ điểm M bất kì nằm trên đồ thị hàm số đến hai đường tiệm cận của đồ thị hàm số đó bằng 1.

Đ

S

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đ

b) S

c) Đ

d) Đ

 

Ta có: y = .

Tập xác định: D = ℝ\{1}.

y = = +∞, y = = −∞.

Do đó, đồ thị hàm số có tiệm cận đứng là đường thẳng x = 1.

y = = −3, y = = −3.

Do đó, đồ thị hàm số có tiệm cận ngang là đường thẳng y = −3.

Có x = x0 thay vào hàm y ta được:

y = = = = −3 − .

Lấy M(x0; −3 − ) thuộc đồ thị hàm số, ta có:

Khoảng cách từ M đến đường tiệm cận đứng x = 1 là: .

Khoảng cách từ M đến đường tiệm cận ngang y = −3 là: .

Ta có .

Vậy tích khoảng cách từ điểm M bất kì nằm trên đồ thị hàm số đến hai đường tiệm cận của đồ thị hàm số đó bằng 1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chu vi của cửa sổ là: x + 2y + = 5 (m).

Từ đó suy ra: y = (m).

Diện tích cửa sổ là: S = xy + = = .

Ta có S' = x +  

Trên khoảng (0; +∞), S' = 0 khi x = .

Ta có bảng xét dấu sau:

Để diện tích cửa sổ là lớn nhất thì x = , khi đó y = .

Vậy x = ≈ 1,4 (m), y = ≈ 0,7 (m).

Lời giải

Đặt các điểm trên Hình 32 như trên. Khi đó ta có:

EF = DC – DF – EC = 0,9 − 2x (m).

Lúc này, khi miếng bìa được gập vào thành hình hộp chữ nhật có chiều cao là x (m), chiều rộng đáy là x (m) và chiều dài đáy là 0,9 – 2x (m).

Suy ra V = x2.(0,9 – 2x)   (m3)

Xét hàm số V(x) = x2.(0,9 – 2x).

            V'(x) = −6x2 + 1,8x

            V'(x) = 0 −6x2 + 1,8x = 0 x = 0 hoặc x = 0,3.

Mà điều kiện 0 < x < = 0,45 nên x = 0,3 thỏa mãn điều kiện.

Bảng biến thiên của hàm số V(x) trên khoảng (0; 0,45) như sau:

Căn cứ vào bảng biến thiên, ta có hàm số V(x) đạt giá trị lớn nhất 0,027 tại x = 0,3.

Vậy x = 0,3 m thì thể tích của hình hộp chữ nhật tạo thành là lớn nhất.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP