Cho hàm số y =
.
a) Đồ thị hàm số có tiệm cận đứng là đường thẳng x = 1.
Đ
S
b) Đồ thị hàm số có tiệm cận ngang là đường thẳng y = 3.
Đ
S
c) Điểm M nằm trên đồ thị hàm số có hoành độ x0 ≠ 1 thì tung độ y0 = −3 −
.
Đ
S
d) Tích khoảng cách từ điểm M bất kì nằm trên đồ thị hàm số đến hai đường tiệm cận của đồ thị hàm số đó bằng 1.
Đ
S
Cho hàm số y =
.
|
a) Đồ thị hàm số có tiệm cận đứng là đường thẳng x = 1. |
Đ |
S |
|
b) Đồ thị hàm số có tiệm cận ngang là đường thẳng y = 3. |
Đ |
S |
|
c) Điểm M nằm trên đồ thị hàm số có hoành độ x0 ≠ 1 thì tung độ y0 = −3 − |
Đ |
S |
|
d) Tích khoảng cách từ điểm M bất kì nằm trên đồ thị hàm số đến hai đường tiệm cận của đồ thị hàm số đó bằng 1. |
Đ |
S |
Câu hỏi trong đề: Giải SBT Toán 12 CD Bài tập cuối chương 1 có đáp án !!
Quảng cáo
Trả lời:
|
a) Đ |
b) S |
c) Đ |
d) Đ |
Ta có: y =
.
Tập xác định: D = ℝ\{1}.
Có
y = ![]()
= +∞,
y = ![]()
= −∞.
Do đó, đồ thị hàm số có tiệm cận đứng là đường thẳng x = 1.
y = ![]()
= −3,
y = ![]()
= −3.
Do đó, đồ thị hàm số có tiệm cận ngang là đường thẳng y = −3.
Có x = x0 thay vào hàm y ta được:
y =
=
=
= −3 −
.
Lấy M(x0; −3 −
) thuộc đồ thị hàm số, ta có:
Khoảng cách từ M đến đường tiệm cận đứng x = 1 là:
.
Khoảng cách từ M đến đường tiệm cận ngang y = −3 là:
.
Ta có
.
Vậy tích khoảng cách từ điểm M bất kì nằm trên đồ thị hàm số đến hai đường tiệm cận của đồ thị hàm số đó bằng 1.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Đặt các điểm trên Hình 32 như trên. Khi đó ta có:
EF = DC – DF – EC = 0,9 − 2x (m).
Lúc này, khi miếng bìa được gập vào thành hình hộp chữ nhật có chiều cao là x (m), chiều rộng đáy là x (m) và chiều dài đáy là 0,9 – 2x (m).
Suy ra V = x2.(0,9 – 2x) (m3)
Xét hàm số V(x) = x2.(0,9 – 2x).
V'(x) = −6x2 + 1,8x
V'(x) = 0 ⇔ −6x2 + 1,8x = 0 ⇔ x = 0 hoặc x = 0,3.
Mà điều kiện 0 < x <
= 0,45 nên x = 0,3 thỏa mãn điều kiện.
Bảng biến thiên của hàm số V(x) trên khoảng (0; 0,45) như sau:

Căn cứ vào bảng biến thiên, ta có hàm số V(x) đạt giá trị lớn nhất 0,027 tại x = 0,3.
Vậy x = 0,3 m thì thể tích của hình hộp chữ nhật tạo thành là lớn nhất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.









