Tìm:
a) \(\int {\left( {2{e^x} + \frac{1}{{{3^x}}}} \right)} dx\);
b) \(\int {\left( {{x^2} + {2^x}} \right)} dx\).
Tìm:
a) \(\int {\left( {2{e^x} + \frac{1}{{{3^x}}}} \right)} dx\);
b) \(\int {\left( {{x^2} + {2^x}} \right)} dx\).
Quảng cáo
Trả lời:

a) \(\int {\left( {2{e^x} + \frac{1}{{{3^x}}}} \right)} dx\) = \(\int {2{e^x}dx + \int {\frac{1}{{{3^x}}}dx} } \)
= \(\int {2{e^x}dx + \int {{3^{ - x}}dx} } \)
= 2ex − \(\frac{1}{{{3^x}.\ln 3}}\) + C.
b) \(\int {\left( {{x^2} + {2^x}} \right)} dx\) = \(\int {{x^2}dx + \int {{2^x}dx} } \)
= \(\frac{{{x^3}}}{3} + \frac{{{2^x}}}{{\ln 2}} + C\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Độ cao h(t) của viên đạn tại điểm t là:
h(t) = \(\int {\left( {150 - 9,8t} \right)dt} \) = 150t – 9,8\(\frac{{{t^2}}}{2}\)+ C = 150t – 4,9t2 + C.
Thay t = 0 ta được h(0) = C = 0.
Vậy h(t) = 150t – 4,9t2 (m).
a) Sau t = 3 giây, độ cao của viên đạn là:
h = h(3) = 150.3 – 4,9.32 = 405,9 (m).
b) Ta có: h(t) = 150t – 4,9t2 (m).
h'(t) = v(t) = 150 – 9,8t
h'(t) = 0 ⇔ t = \(\frac{{150}}{{9,8}}\).
Ta có bảng xét dấu như sau:

Khi đó, viên đạn đạt độ cao lớn nhất tại thời điểm tmax = \(\frac{{150}}{{9,8}}\).
Như vậy hmax = 150tmax – 4,9\(t_{\max }^2\)≈ 1148,0 (m).
Lời giải
Ta có: f(x) = \(\int {f'\left( x \right)dx} \)
= \(\int {\left( {3\sqrt x + \frac{2}{{\sqrt[3]{x}}}} \right)} dx\)
= \(\int {3\sqrt x dx + \int {\frac{2}{{\sqrt[3]{x}}}} } dx\)
= 2x\(\sqrt x \) + 3\(\sqrt[3]{{{x^2}}}\) + C.
Mà f(1) = 1 nên 2 + 3 + C = 1 hay C = −4.
Vậy f(x) = 2x\(\sqrt x \) + 3\(\sqrt[3]{{{x^2}}}\) − 4.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.