Câu hỏi:
28/08/2024 6,190
Cho hàm số y = ax2 (a ≠ 0). Xác định hệ số a và vẽ đồ thị của hàm số với a tìm được trong mỗi trường hợp sau:
a) Đồ thị của hàm số đi qua A(–3; 27).
b) Đồ thị của hàm số đi qua B(–2; –3).
Cho hàm số y = ax2 (a ≠ 0). Xác định hệ số a và vẽ đồ thị của hàm số với a tìm được trong mỗi trường hợp sau:
a) Đồ thị của hàm số đi qua A(–3; 27).
b) Đồ thị của hàm số đi qua B(–2; –3).
Quảng cáo
Trả lời:
a) Với A(–3; 27) ta thay x = ‒3; y = 27 vào hàm số y = ax2 ta được:
27 = a.(‒3)2 hay 9a = 27, suy ra a = 3.
Vậy y = 3x2.
Ta có bảng giá trị của hàm số:
x |
–2 |
–1 |
0 |
1 |
2 |
y = 3x2 |
12 |
3 |
0 |
3 |
12 |
• Trên mặt phẳng tọa độ Oxy, lấy các điểm A(‒2; 12); B (‒1; 3); O(0; 0); C(1; 3); D(2; 12).
• Đồ thị của hàm số y = 3x2 là một đường parabol đỉnh O, đi qua các điểm trên và có dạng như hình vẽ.

b) Với B(– 2; – 3) ta thay x = ‒2; y = ‒3 vào hàm số y = ax2 ta được:
‒3 = a.(‒2)2 hay 4a = ‒ 3, suy ra \(a = - \frac{3}{4}.\)
Vậy\(\;y = - \frac{3}{4}{x^2}\).
Ta có bảng giá trị của hàm số:
x |
– 2 |
– 1 |
0 |
1 |
2 |
\(y = - \frac{3}{4}{x^2}\) |
– 3 |
\( - \frac{3}{4}\) |
0 |
\( - \frac{3}{4}\) |
– 3 |
• Trên mặt phẳng tọa độ Oxy, lấy các điểm A(‒2; ‒3); \[B\left( { - 1; - \frac{3}{4}} \right);\] O(0; 0); \[C\left( {1; - \frac{3}{4}} \right);\] D(2; ‒3).
• Đồ thị của hàm số \(y = - \frac{3}{4}{x^2}\) là một đường parabol đỉnh O, đi qua các điểm trên và có dạng như hình vẽ.

Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Do đồ thị (P) cắt đường thẳng d tại điểm B có hoành độ bằng 1 nên x = 1, thay vào hàm số y = –2x + 4, ta được y = ‒2.1 + 4 = ‒2 + 4 = 2.
Do đó B(1; 2).
Vì B(1; 2) cũng thuộc đồ thị (P): y = ax2, nên ta có:
2 = a.12, suy ra a = 2.
Vậy (P): y = 2x2.
Ta có bảng giá trị của hàm số:
x |
–2 |
–1 |
0 |
1 |
2 |
y = 2x2 |
8 |
2 |
0 |
2 |
8 |
• Trên mặt phẳng tọa độ Oxy, lấy các điểm M(‒2; 8); N(‒1; 2); O(0; 0); B(1; 2); Q(2; 8).
• Đồ thị của hàm số y = 2x2 là một đường parabol đỉnh O, đi qua các điểm trên và có dạng như hình vẽ.

b) Do đường thẳng d’: y = (m + 3)x – 2 cắt đồ thị (P) của hàm số tại điểm A có hoành độ bằng 4 nên x = 4
Thay x = 4 vào hàm số y = 2x2, ta được: y = 2.42 = 2.16 = 32.
Do đó A(4; 32).
Vì điểm A(4; 32) cũng thuộc d’ nên ta có:
32 = (m + 3).4 – 2
32 = 4m + 12 ‒ 2
4m = 22
\[m = \frac{{11}}{2}.\]
Vậy \[m = \frac{{11}}{2}\] thì đường thẳng d’: y = (m + 3)x – 2 cắt đồ thị (P) của hàm số tại điểm A có hoành độ bằng 4.
Lời giải
a) ‒ Vẽ đồ thị hàm số \(\left( P \right):y = \frac{3}{2}{x^2}\)
Ta có bảng giá trị của hàm số:
x |
–2 |
–1 |
0 |
1 |
2 |
\(y = \frac{3}{2}{x^2}\) |
6 |
\(\frac{3}{2}\) |
0 |
\(\frac{3}{2}\) |
6 |
• Trên mặt phẳng tọa độ Oxy, lấy các điểm A(–2; 6); \(B\left( { - 1;\,\,\frac{3}{2}} \right),\) O(0; 0); \(B'\left( {1;\,\,\frac{3}{2}} \right),\) A’(2; 6).
• Đồ thị của hàm số \(y = \frac{3}{2}{x^2}\) là một đường parabol đỉnh O, đi qua các điểm trên và có dạng như hình vẽ.
‒ Vẽ đường thẳng d: y = 3x.
Đồ thị của hàm số y = 3x là đường thẳng đi qua các điểm O(0; 0) và A’(2; 6).
Đồ thị của hai hàm số \(y = \frac{3}{2}{x^2}\) và y = 3x được vẽ như sau:

b) Dựa vào hình vẽ, ta có các giao điểm của (P) và d là O(0; 0) và A’(2; 6).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.