Cho biết điểm A thuộc đồ thị của hàm số y = ax2, điểm B thuộc đồ thị của hàm số y = a’x2.
a) Xác định các hệ số a và a’.
b) Lấy điểm A’ đối xứng với A qua trục tung. Điểm A’ có thuộc đồ thị của hàm số y = ax2 không? Vì sao?
c) Biết rằng điểm M(4; b) thuộc đồ thị của hàm số y = a’x2, hãy tính b. Điểm M’(– 4; b) có thuộc đồ thị của hàm số y = a’x2 không? Vì sao?
Cho biết điểm A thuộc đồ thị của hàm số y = ax2, điểm B thuộc đồ thị của hàm số y = a’x2.
a) Xác định các hệ số a và a’.
b) Lấy điểm A’ đối xứng với A qua trục tung. Điểm A’ có thuộc đồ thị của hàm số y = ax2 không? Vì sao?
c) Biết rằng điểm M(4; b) thuộc đồ thị của hàm số y = a’x2, hãy tính b. Điểm M’(– 4; b) có thuộc đồ thị của hàm số y = a’x2 không? Vì sao?
Quảng cáo
Trả lời:
Từ Hình 4 ta có A(2; –4) và B(2; –2).
a) ⦁ Do điểm A thuộc đồ thị của hàm số y = ax2 nên thay x = 2; y = –4 vào hàm số y = ax2, ta được
‒4 = a.22 hay 4a = ‒4, suy ra a = –1.
Do đó (P): y = –x2.
⦁ Do điểm B thuộc đồ thị của hàm số y = a’x2 nên thay toạ độ điểm x = 2; y = –2 vào hàm số y = a’x2, ta được
‒2 = a.22 hay 4a = ‒2, suy ra \(a' = - \frac{1}{2}.\)
Do đó \(\left( {{\rm{P'}}} \right):y = - \frac{1}{2}{{\rm{x}}^2}.\)
b) Cách 1. Ta có: đồ thị hàm số (P): y = –x2 là một parabol nhận trục tung làm trục đối xứng.
Mà hai điểm A, A’ đối xứng với nhau qua trục tung và A thuộc (P) nên điểm A’ cũng thuộc (P): y = –x2.
Cách 2. Điểm A’ đối xứng với điểm A qua trục tung nên ta có A’(–2; –4).
Thay x = –2 vào hàm số y = –x2, ta được: y = –(–2)2 = –4.
Do đó điểm A’(–2; –4) cũng thuộc (P): y = –x2.
c) Cách 1. Ta có: đồ thị hàm số \(\left( {{\rm{P'}}} \right):y = - \frac{1}{2}{{\rm{x}}^2}\) là một parabol nhận trục tung làm trục đối xứng.
Xét điểm M(4; b) và M’(–4; b) là hai điểm có hoành độ đối nhau và tung độ bằng nhau nên M, M’ là hai điểm đối xứng với nhau qua trục tung, mà điểm M(4; b) thuộc đồ thị (P’) nên điểm M’(–4; b) cũng thuộc \(\left( {{\rm{P'}}} \right):y = - \frac{1}{2}{{\rm{x}}^2}.\)
Cách 2. Do điểm M(4; b) thuộc đồ thị của hàm số \(y = - \frac{1}{2}{{\rm{x}}^2},\) nên thay x = 4; y = b vào hàm số \(y = - \frac{1}{2}{x^2},\) ta được
\[b = - \frac{1}{2} \cdot {4^2}\] suy ra b = –8.
Do đó M(4; –8) và M’(–4; –8).
Thay x = –4 vào hàm số \(y = - \frac{1}{2}{x^2},\) ta được:
\(y = - \frac{1}{2} \cdot {\left( { - 4} \right)^2} = - \frac{1}{2} \cdot 16 = - 8.\)
Vậy điểm M’(–4; –8) thuộc \(\left( {{\rm{P'}}} \right):y = - \frac{1}{2}{{\rm{x}}^2}.\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Do đồ thị (P) cắt đường thẳng d tại điểm B có hoành độ bằng 1 nên x = 1, thay vào hàm số y = –2x + 4, ta được y = ‒2.1 + 4 = ‒2 + 4 = 2.
Do đó B(1; 2).
Vì B(1; 2) cũng thuộc đồ thị (P): y = ax2, nên ta có:
2 = a.12, suy ra a = 2.
Vậy (P): y = 2x2.
Ta có bảng giá trị của hàm số:
|
x |
–2 |
–1 |
0 |
1 |
2 |
|
y = 2x2 |
8 |
2 |
0 |
2 |
8 |
• Trên mặt phẳng tọa độ Oxy, lấy các điểm M(‒2; 8); N(‒1; 2); O(0; 0); B(1; 2); Q(2; 8).
• Đồ thị của hàm số y = 2x2 là một đường parabol đỉnh O, đi qua các điểm trên và có dạng như hình vẽ.
b) Do đường thẳng d’: y = (m + 3)x – 2 cắt đồ thị (P) của hàm số tại điểm A có hoành độ bằng 4 nên x = 4
Thay x = 4 vào hàm số y = 2x2, ta được: y = 2.42 = 2.16 = 32.
Do đó A(4; 32).
Vì điểm A(4; 32) cũng thuộc d’ nên ta có:
32 = (m + 3).4 – 2
32 = 4m + 12 ‒ 2
4m = 22
\[m = \frac{{11}}{2}.\]
Vậy \[m = \frac{{11}}{2}\] thì đường thẳng d’: y = (m + 3)x – 2 cắt đồ thị (P) của hàm số tại điểm A có hoành độ bằng 4.
Lời giải
a) Với A(–3; 27) ta thay x = ‒3; y = 27 vào hàm số y = ax2 ta được:
27 = a.(‒3)2 hay 9a = 27, suy ra a = 3.
Vậy y = 3x2.
Ta có bảng giá trị của hàm số:
|
x |
–2 |
–1 |
0 |
1 |
2 |
|
y = 3x2 |
12 |
3 |
0 |
3 |
12 |
• Trên mặt phẳng tọa độ Oxy, lấy các điểm A(‒2; 12); B (‒1; 3); O(0; 0); C(1; 3); D(2; 12).
• Đồ thị của hàm số y = 3x2 là một đường parabol đỉnh O, đi qua các điểm trên và có dạng như hình vẽ.
b) Với B(– 2; – 3) ta thay x = ‒2; y = ‒3 vào hàm số y = ax2 ta được:
‒3 = a.(‒2)2 hay 4a = ‒ 3, suy ra \(a = - \frac{3}{4}.\)
Vậy\(\;y = - \frac{3}{4}{x^2}\).
Ta có bảng giá trị của hàm số:
|
x |
– 2 |
– 1 |
0 |
1 |
2 |
|
\(y = - \frac{3}{4}{x^2}\) |
– 3 |
\( - \frac{3}{4}\) |
0 |
\( - \frac{3}{4}\) |
– 3 |
• Trên mặt phẳng tọa độ Oxy, lấy các điểm A(‒2; ‒3); \[B\left( { - 1; - \frac{3}{4}} \right);\] O(0; 0); \[C\left( {1; - \frac{3}{4}} \right);\] D(2; ‒3).
• Đồ thị của hàm số \(y = - \frac{3}{4}{x^2}\) là một đường parabol đỉnh O, đi qua các điểm trên và có dạng như hình vẽ.

Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.