Câu hỏi:
28/08/2024 110Cho biết điểm A thuộc đồ thị của hàm số y = ax2, điểm B thuộc đồ thị của hàm số y = a’x2.
a) Xác định các hệ số a và a’.
b) Lấy điểm A’ đối xứng với A qua trục tung. Điểm A’ có thuộc đồ thị của hàm số y = ax2 không? Vì sao?
c) Biết rằng điểm M(4; b) thuộc đồ thị của hàm số y = a’x2, hãy tính b. Điểm M’(– 4; b) có thuộc đồ thị của hàm số y = a’x2 không? Vì sao?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Từ Hình 4 ta có A(2; –4) và B(2; –2).
a) ⦁ Do điểm A thuộc đồ thị của hàm số y = ax2 nên thay x = 2; y = –4 vào hàm số y = ax2, ta được
‒4 = a.22 hay 4a = ‒4, suy ra a = –1.
Do đó (P): y = –x2.
⦁ Do điểm B thuộc đồ thị của hàm số y = a’x2 nên thay toạ độ điểm x = 2; y = –2 vào hàm số y = a’x2, ta được
‒2 = a.22 hay 4a = ‒2, suy ra \(a' = - \frac{1}{2}.\)
Do đó \(\left( {{\rm{P'}}} \right):y = - \frac{1}{2}{{\rm{x}}^2}.\)
b) Cách 1. Ta có: đồ thị hàm số (P): y = –x2 là một parabol nhận trục tung làm trục đối xứng.
Mà hai điểm A, A’ đối xứng với nhau qua trục tung và A thuộc (P) nên điểm A’ cũng thuộc (P): y = –x2.
Cách 2. Điểm A’ đối xứng với điểm A qua trục tung nên ta có A’(–2; –4).
Thay x = –2 vào hàm số y = –x2, ta được: y = –(–2)2 = –4.
Do đó điểm A’(–2; –4) cũng thuộc (P): y = –x2.
c) Cách 1. Ta có: đồ thị hàm số \(\left( {{\rm{P'}}} \right):y = - \frac{1}{2}{{\rm{x}}^2}\) là một parabol nhận trục tung làm trục đối xứng.
Xét điểm M(4; b) và M’(–4; b) là hai điểm có hoành độ đối nhau và tung độ bằng nhau nên M, M’ là hai điểm đối xứng với nhau qua trục tung, mà điểm M(4; b) thuộc đồ thị (P’) nên điểm M’(–4; b) cũng thuộc \(\left( {{\rm{P'}}} \right):y = - \frac{1}{2}{{\rm{x}}^2}.\)
Cách 2. Do điểm M(4; b) thuộc đồ thị của hàm số \(y = - \frac{1}{2}{{\rm{x}}^2},\) nên thay x = 4; y = b vào hàm số \(y = - \frac{1}{2}{x^2},\) ta được
\[b = - \frac{1}{2} \cdot {4^2}\] suy ra b = –8.
Do đó M(4; –8) và M’(–4; –8).
Thay x = –4 vào hàm số \(y = - \frac{1}{2}{x^2},\) ta được:
\(y = - \frac{1}{2} \cdot {\left( { - 4} \right)^2} = - \frac{1}{2} \cdot 16 = - 8.\)
Vậy điểm M’(–4; –8) thuộc \(\left( {{\rm{P'}}} \right):y = - \frac{1}{2}{{\rm{x}}^2}.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y = ax2 (a ≠ 0). Xác định hệ số a và vẽ đồ thị của hàm số với a tìm được trong mỗi trường hợp sau:
a) Đồ thị của hàm số đi qua A(–3; 27).
b) Đồ thị của hàm số đi qua B(–2; –3).
Câu 2:
Cho hàm số y = ax2 (a ≠ 0).
a) Xác định hệ số a, biết rằng đồ thị (P) của hàm số cắt đường thẳng d: y = –2x + 4 tại điểm B có hoành độ bằng 1. Vẽ đồ thị của hàm số với a vừa tìm được.
b) Xác định m để đường thẳng d’: y = (m + 3)x – 2 cắt đồ thị (P) của hàm số tại điểm A có hoành độ bằng 4.
Câu 3:
Cho hàm số \(y = - \frac{{{x^2}}}{2}.\)
a) Vẽ đồ thị của hàm số.
b) Đường thẳng y = ax + b cắt đồ thị của hàm số đã cho tại hai điểm A và B có hoành độ lần lượt bằng 1 và –2. Hãy xác định a và b.
Câu 4:
Cho parabol \(\left( P \right):y = \frac{3}{2}{x^2}\) và đường thẳng d: y = 3x.
a) Vẽ (P) và d trên cùng một mặt phẳng toạ độ Oxy.
b) Dựa vào hình vẽ, tìm toạ độ giao điểm của (P) và d.
Câu 5:
Một bể nước dạng hình hộp chữ nhật với đáy là hình vuông có độ dài cạnh là x (m). Chiều cao của bể bằng 1,5 m. Gọi V là thể tích của bể.
a) Viết công thức tính thể tích V (m3) theo x.
b) Giả sử chiều cao của bể không đổi. Tính thể tích của bể khi x lần lượt nhận các giá trị: 1; 2; 3. Khi x tăng lên 2 lần, 3 lần thì thể tích của bể tăng lên mấy lần?
Câu 6:
Nhiệt lượng toả ra trong dây dẫn được tính bởi công thức:
Q = 0,24I2Rt,
trong đó Q là nhiệt lượng tính bằng calo (cal), R là điện trở tính bằng ôm (Ω), I là cường độ dòng điện tính bằng ampe (A), t là thời gian tính bằng giây.
Xét dòng điện chạy qua một dây dẫn có điện trở R = 10 Ω trong thời gian 1 giây.
a) Hoàn thành bảng giá trị sau:
I (A) |
1 |
2 |
3 |
4 |
Q (cal) |
? |
? |
? |
? |
b) Tính cường độ dòng điện trong dây dẫn khi nhiệt lượng toả ra là 135 calo.
về câu hỏi!