Câu hỏi:

28/08/2024 852

Một công nhân theo kế hoạch phải làm 120 sản phẩm trong một thời gian nhất định. Do cải tiến kĩ thuật nên thực tế mỗi ngày người đó đã làm được nhiều hơn 3 sản phẩm so với kế hoạch. Vì thế người đó đã hoàn thành công việc sớm hơn dự định 2 ngày. Hỏi theo kế hoạch, mỗi ngày công nhân đó phải làm bao nhiêu sản phẩm?

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi x là số sản phẩm mà người công nhân phải làm theo kế hoạch mỗi ngày (x *, x < 120).

Số sản phẩm mỗi ngày mà người đó đã làm theo thực tế là x + 3 (sản phẩm).

Thời gian mà người đó phải hoàn thành theo kế hoạch là \(\frac{{120}}{x}\) (ngày).

Thời gian mà người đó đã hoàn thành theo thực tế là \(\frac{{120}}{{x + 3}}\) (ngày).

Theo bài, người đó đã hoàn thành công việc sớm hơn dự định 2 ngày nên ta có phương trình: \(\frac{{120}}{x} - \frac{{120}}{{x + 3}} = 2.\)

Giải phương trình:

\(\frac{{120}}{x} - \frac{{120}}{{x + 3}} = 2\)

\(\frac{{60}}{x} - \frac{{60}}{{x + 3}} = 1\)

\(\frac{{60\left( {x + 3} \right)}}{{x\left( {x + 3} \right)}} - \frac{{60x}}{{x\left( {x + 3} \right)}} = \frac{{x\left( {x + 3} \right)}}{{x\left( {x + 3} \right)}}\)

60(x + 3) – 60x = x(x + 3)

60x + 180 – 60x = x2 + 3x

x2 + 3x ‒180 = 0

Phương trình trên có a = 1, b = 3, c = ‒180, ∆ = 32 ‒ 4.1.(‒180) = 9 + 720 = 729 > 0.

Do đó, phương trình có hai nghiệm phân biệt là

\[{x_1} = \frac{{ - 3 + \sqrt {729} }}{{2 \cdot 1}} = \frac{{ - 3 + 27}}{2} = \frac{{24}}{2} = 12;\]

\[{x_2} = \frac{{ - 3 - \sqrt {729} }}{{2 \cdot 1}} = \frac{{ - 3 - 27}}{2} = \frac{{ - 30}}{2} = - 15.\]

Ta thấy chỉ có giá trị x1 = 12 thoả mãn điều kiện.

Vậy theo kế hoạch, mỗi ngày công nhân đó phải làm 12 sản phẩm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một phòng họp có 420 cái ghế được chia thành các dãy có số ghế bằng nhau. Nếu thêm cho mỗi dãy 7 cái ghế và bớt đi 5 dãy thì số ghế trong phòng họp không thay đổi. Hỏi lúc đầu trong phòng họp có bao nhiêu dãy ghế?

Xem đáp án » 28/08/2024 577

Câu 2:

Cho phương trình 5x2 – 7x + 1 = 0. Gọi x1, x2 là hai nghiệm của phương trình. Không giải phương trình, hãy tính giá trị của biểu thức

\(A = \left( {{x_1} - \frac{7}{5}} \right){x_1} + \frac{1}{{25x_2^2}} + x_2^2.\)

Xem đáp án » 28/08/2024 474

Câu 3:

Một mảnh vườn hình chữ nhật có diện tích 1 000 m2. Nếu tăng chiều dài thêm 10 m, giảm chiều rộng đi 5 m thì diện tích mảnh vườn không thay đổi. Tính các kích thước của mảnh vườn.

Xem đáp án » 28/08/2024 313

Câu 4:

Cho phương trình 2x2 – 9x – 5 = 0. Gọi x1, x2 là hai nghiệm của phương trình. Không giải phương trình, hãy tính giá trị của các biểu thức sau:

a) \[A = x_1^2x_2^2 - 2x_1^2 - 2x_2^2;\]

b) \(B = \frac{{5{x_2}}}{{{x_1} + 2}} + \frac{{5{x_1}}}{{{x_2} + 2}}.\)

Xem đáp án » 28/08/2024 282

Câu 5:

Một ô tô dự định đi từ tỉnh A đến tỉnh B cách nhau 180 km trong một thời gian nhất định. Sau khi đi được 1 giờ, ô tô bị hỏng nên phải dừng lại 20 phút để sửa. Để đến tỉnh B đúng giờ đã định thì trên quãng đường còn lại ô tô phải tăng tốc độ thêm mỗi giờ 12 km. Tính tốc độ lúc đầu của ô tô.

Xem đáp án » 28/08/2024 250

Câu 6:

Đồ thị của hàm số y = ax2 (a ≠ 0) đi qua điểm A(1; – 2). Giá trị của a bằng

A. 2.

B. –2.

C. \(\frac{1}{4}.\)

D. \( - \frac{1}{4}.\)

Xem đáp án » 28/08/2024 225

Bình luận


Bình luận