Câu hỏi:
28/08/2024 4,247
Một mảnh vườn hình chữ nhật có diện tích 1 000 m2. Nếu tăng chiều dài thêm 10 m, giảm chiều rộng đi 5 m thì diện tích mảnh vườn không thay đổi. Tính các kích thước của mảnh vườn.
Một mảnh vườn hình chữ nhật có diện tích 1 000 m2. Nếu tăng chiều dài thêm 10 m, giảm chiều rộng đi 5 m thì diện tích mảnh vườn không thay đổi. Tính các kích thước của mảnh vườn.
Quảng cáo
Trả lời:
Gọi x (m) là chiều dài của mảnh vườn (x > 0).
Do mảnh vườn hình chữ nhật có diện tích 1 000 m2 nên chiều rộng của mảnh vườn là \(\frac{{1\,\,000}}{x}\,\,({\rm{m}}).\)
Nếu tăng chiều dài thêm 10 m thì chiều dài của mảnh vườn lúc sau là x + 10 (m).
Nếu giảm chiều rộng đi 5 m thì chiều rộng của mảnh vườn lúc sau là \(\frac{{1\,\,000}}{x} - 5\,\,({\rm{m}}).\)
Diện tích của mảnh vườn khi đó là:
\(\left( {x + 10} \right)\left( {\frac{{1\,\,000}}{x} - 5} \right){\rm{\;(}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)
Theo bài, sau khi thay đổi kích thước thì diện tích mảnh vườn không thay đổi, nên ta có phương trình: \(\left( {x + 10} \right)\left( {\frac{{1\,\,000}}{x} - 5} \right) = 1\,\,000.\)
Giải phương trình:
\(\left( {x + 10} \right)\left( {\frac{{1\,\,000}}{x} - 5} \right) = 1\,\,000\)
\(1\,\,000 - 5x + \frac{{10\,\,000}}{x} - 50 = 1\,\,000\)
\( - 5x + \frac{{10\,\,000}}{x} - 50 = 0\)
\( - x + \frac{{2\,\,000}}{x} - 10 = 0\)
\(\frac{{ - {x^2}}}{x} + \frac{{2\,\,000}}{x} - \frac{{10x}}{x} = 0\)
x2 + 10x ‒ 2 000 = 0
Phương trình trên có a = 1, b’ = 5, c = ‒2 000, ∆’ = 52 – 1.(‒2 000) = 2 025 > 0.
Do đó phương trình có hai nghiệm phân biệt là:
\[{x_1} = \frac{{ - 5 + \sqrt {2\,\,025} }}{1} = \frac{{ - 5 + 45}}{1} = 40;\]
\[{x_2} = \frac{{ - 5 - \sqrt {2\,\,025} }}{1} = \frac{{ - 5 - 45}}{1} = - 50.\]
Ta thấy chỉ có giá trị x1 = 40 thoả mãn điều kiện.
Vậy chiều dài của mảnh vườn là 40 m, chiều rộng của mảnh vườn \(\frac{{1\,\,000}}{{40}} = 25\) m.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét phương trình 5x2 – 7x + 1 = 0 có ∆ = (–7)2 – 4.5.1 = 49 – 20 = 29 > 0.
Do đó phương trình đã cho có hai nghiệm phân biệt.
Theo định lí Viète, ta có: \({x_1} + {x_2} = - \frac{{ - 7}}{5} = \frac{7}{5};\,\,\,{x_1}{x_2} = \frac{1}{5}.\)
Ta có: \(A = \left( {{x_1} - \frac{7}{5}} \right){x_1} + \frac{1}{{25x_2^2}} + x_2^2\)
\( = \left[ {{x_1} - \left( {{x_1} + {x_2}} \right)} \right]{x_1} + {\left( {\frac{1}{5}} \right)^2} \cdot \frac{1}{{x_2^2}} + x_2^2\)
\( = \left[ {{x_1} - {x_1} - {x_2}} \right]{x_1} + {\left( {{x_1}{x_2}} \right)^2} \cdot \frac{1}{{x_2^2}} + x_2^2\)
\( = - {x_1}{x_2} + x_1^2x_2^2 \cdot \frac{1}{{x_2^2}} + x_2^2\)
\( = - {x_1}{x_2} + x_1^2 + x_2^2\)
\( = - {x_1}{x_2} + \left( {x_1^2 + x_2^2 + 2{x_1}{x_2}} \right) - 2{x_1}{x_2}\)
\( = - {x_1}{x_2} + {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2}\)
\( = {\left( {{x_1} + {x_2}} \right)^2} - 3{x_1}{x_2}\)
\( = {\left( {\frac{7}{5}} \right)^2} - 3 \cdot \frac{1}{5} = \frac{{49}}{{25}} - \frac{3}{5} = \frac{{49}}{{25}} - \frac{{15}}{{25}} = \frac{{34}}{{25}}.\)
Lời giải
Gọi x là số sản phẩm mà người công nhân phải làm theo kế hoạch mỗi ngày (x ∈ ℕ*, x < 120).
Số sản phẩm mỗi ngày mà người đó đã làm theo thực tế là x + 3 (sản phẩm).
Thời gian mà người đó phải hoàn thành theo kế hoạch là \(\frac{{120}}{x}\) (ngày).
Thời gian mà người đó đã hoàn thành theo thực tế là \(\frac{{120}}{{x + 3}}\) (ngày).
Theo bài, người đó đã hoàn thành công việc sớm hơn dự định 2 ngày nên ta có phương trình: \(\frac{{120}}{x} - \frac{{120}}{{x + 3}} = 2.\)
Giải phương trình:
\(\frac{{120}}{x} - \frac{{120}}{{x + 3}} = 2\)
\(\frac{{60}}{x} - \frac{{60}}{{x + 3}} = 1\)
\(\frac{{60\left( {x + 3} \right)}}{{x\left( {x + 3} \right)}} - \frac{{60x}}{{x\left( {x + 3} \right)}} = \frac{{x\left( {x + 3} \right)}}{{x\left( {x + 3} \right)}}\)
60(x + 3) – 60x = x(x + 3)
60x + 180 – 60x = x2 + 3x
x2 + 3x ‒180 = 0
Phương trình trên có a = 1, b = 3, c = ‒180, ∆ = 32 ‒ 4.1.(‒180) = 9 + 720 = 729 > 0.
Do đó, phương trình có hai nghiệm phân biệt là
\[{x_1} = \frac{{ - 3 + \sqrt {729} }}{{2 \cdot 1}} = \frac{{ - 3 + 27}}{2} = \frac{{24}}{2} = 12;\]
\[{x_2} = \frac{{ - 3 - \sqrt {729} }}{{2 \cdot 1}} = \frac{{ - 3 - 27}}{2} = \frac{{ - 30}}{2} = - 15.\]
Ta thấy chỉ có giá trị x1 = 12 thoả mãn điều kiện.
Vậy theo kế hoạch, mỗi ngày công nhân đó phải làm 12 sản phẩm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.