Câu hỏi:

15/09/2024 149

Phải tăng chiều dài các cạnh của một khối lập phương lên bao nhiêu lần để nhân được một khối lập phương mới có thể tích gấp 125 lần thể tích khối lập phương đã cho.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Nếu x (cm) và V (cm3) lần lượt là bán kính và thể tích của khối lập phương đã cho thì V = x3.

Khi tăng các cạnh của khối lập phương đã cho lên k lần (k > 0) thì chiều dài cạnh của khối lập phương mới là kx (cm) và thể tích khối lập phương mới là \({V_1} = {\left( {kx} \right)^3}.\)

Từ giả thiết ta có \({V_1} = 125V\) nên \({\left( {kx} \right)^3} = 125{x^3}\) hay k3 = 125, do đó \(k = \sqrt[3]{{125}} = 5.\)

Vì vậy, cần tăng chiều dài các cạnh của khối lập phương đã cho lên 5 lần để khối lập phương mới có thể tích gấp 125 lần thể tích khối lập phương đã cho.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \[A = \frac{{\sqrt x + 2}}{{\sqrt x - 2}} - \frac{4}{{\sqrt x + 2}} = \frac{{{{\left( {\sqrt x + 2} \right)}^2} - 4\left( {\sqrt x + 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\]

\( = \frac{{x + 4\sqrt x + 4 - 4\sqrt x + 8}}{{{{\left( {\sqrt x } \right)}^2} - {2^2}}} = \frac{{x + 12}}{{x - 4}}.\)

b) Tại x = 14 thì \(A = \frac{{14 + 12}}{{14 - 4}} = \frac{{26}}{{10}} = 2,6.\)

Lời giải

a) Sử dụng tính chất giao hoán và tính chất kết hợp của phép cộng ta có:

\(A = \left( {\frac{2}{{\sqrt x }} + \frac{{\sqrt x }}{{\sqrt x + 5}}} \right) - \frac{{10 - 8\sqrt x }}{{x + 5\sqrt x }}\)

\( = \frac{{2\left( {\sqrt x + 5} \right) + {{\left( {\sqrt x } \right)}^2}}}{{\sqrt x \left( {\sqrt x + 5} \right)}} - \frac{{10 - 8\sqrt x }}{{\sqrt x \left( {\sqrt x + 5} \right)}}\)

\( = \frac{{2\sqrt x + 10 + x - 10 + 8\sqrt x }}{{\sqrt x \left( {\sqrt x + 5} \right)}}\)\( = \frac{{x + 10\sqrt x }}{{x + 5\sqrt x }}.\)

b) Xét hiệu \(A - 2 = \frac{{x + 10\sqrt x }}{{x + 5\sqrt x }} - \frac{{2\left( {x + 5\sqrt x } \right)}}{{x + 5\sqrt x }}\)

\( = \frac{{x + 10\sqrt x - 2x - 10\sqrt x }}{{x + 5\sqrt x }} = \frac{{ - x}}{{x + 5\sqrt x }}\)

\( = \frac{{ - {{\left( {\sqrt x } \right)}^2}}}{{\sqrt x \left( {\sqrt x + 5} \right)}} = \frac{{ - \sqrt x }}{{\sqrt x + 5}}.\)

Với x > 0 thì \(A - 2 = \frac{{ - \sqrt x }}{{\sqrt x + 5}} < 0\) nên giá trị của biểu thức A nhỏ hơn 2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay