Chọn phương án đúng.
Cho tam giác ABC có \(\widehat A = 90^\circ \) và \(\widehat C = 30^\circ \) như trên Hình 4.3. Tìm khẳng định sai trong các khẳng định sau?
A. \(\sin B = \frac{{\sqrt 3 }}{2}.\)
B. \(\cos C = \frac{{\sqrt 3 }}{2}.\)
C. \(\tan B = \sqrt 3 .\)
D. \(\cot B = \frac{1}{2}.\)
Chọn phương án đúng.
Cho tam giác ABC có \(\widehat A = 90^\circ \) và \(\widehat C = 30^\circ \) như trên Hình 4.3. Tìm khẳng định sai trong các khẳng định sau?

A. \(\sin B = \frac{{\sqrt 3 }}{2}.\)
B. \(\cos C = \frac{{\sqrt 3 }}{2}.\)
C. \(\tan B = \sqrt 3 .\)
D. \(\cot B = \frac{1}{2}.\)
Quảng cáo
Trả lời:

Đáp án đúng là: D
Xét tam giác ABC vuông tại A có \(\widehat C = 30^\circ ,\) ta có:
\(\widehat B = 90^\circ - \widehat C = 90^\circ - 30^\circ = 60^\circ \) (định lí tổng ba góc trong một tam giác).
Suy ra \[\sin B = \sin 60^\circ = \frac{{\sqrt 3 }}{2};\] \(\cos C = \cos 30^\circ = \frac{{\sqrt 3 }}{2};\)
\[\tan B = \tan 60^\circ = \sqrt 3 ;\] \(\cot B = \cot 60^\circ = \frac{{\sqrt 3 }}{3}.\)
Vậy khẳng định D là khẳng định sai.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) (H.4.5a)

Theo định lí Pythagore, ta có
AC2 + AB2 = BC2
AC2 = BC2 – AB2
\(AC = \sqrt {B{C^2} - A{B^2}} = \sqrt {{{17}^2} - {8^2}} = \sqrt {225} = 15.\)
Từ đó:
• \(\sin B = \cos C = \frac{{AC}}{{BC}} = \frac{{15}}{{17}},\) \(\cos B = \sin C = \frac{{AB}}{{BC}} = \frac{8}{{17}},\)
• \(\tan B = \cot C = \frac{{AC}}{{AB}} = \frac{{15}}{8},\) \(\cot B = \tan C = \frac{{AB}}{{AC}} = \frac{8}{{15}}.\)
b) (H.4.5b)

Theo Pythagore, ta có:
\(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{{1,2}^2} + {{0,9}^2}} = \sqrt {2,25} = 1,5.\)
Từ đó:
• \(\sin B = \cos C = \frac{{AC}}{{BC}} = \frac{{0,9}}{{1,5}} = 0,6,\)
• \(\cos B = \sin C = \frac{{AB}}{{BC}} = \frac{{1,2}}{{1,5}} = 0,8,\)
\(\tan B = \cot C = \frac{{AC}}{{AB}} = \frac{{0,9}}{{1,2}} = 0,75,\)
\(\cot B = \tan C = \frac{{AB}}{{AC}} = \frac{{1,2}}{{0,9}} = \frac{4}{3}.\)
Lời giải
a) Ta có sin 55° = cos(90° – 55°) = cos 35°;
cos 62° = sin(90° – 62°) = sin 28°;
tan 57° = cot(90° – 57°) = cot 33°;
cot 64° = tan(90° – 64°) = tan 26°.
b) Ta có \(\frac{{\tan 25^\circ }}{{\cot 65^\circ }} = \frac{{\tan 25^\circ }}{{\tan \left( {90^\circ - 65^\circ } \right)}} = \frac{{\tan 25^\circ }}{{\tan 25^\circ }} = 1;\)
\(\tan 34^\circ - \cot 56^\circ = \tan 34^\circ - \tan \left( {90^\circ - 56^\circ } \right) = \tan 34^\circ - \tan 34^\circ = 0.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.