a) Viết các tỉ số lượng giác sau thành tỉ số lượng giác của các góc nhỏ hơn 45°:
sin 55°, cos 62°, tan 57°, cot 64°.
b) Tính \(\frac{{\tan 25^\circ }}{{\cot 65^\circ }},\) tan 34° – cot 56°.
a) Viết các tỉ số lượng giác sau thành tỉ số lượng giác của các góc nhỏ hơn 45°:
sin 55°, cos 62°, tan 57°, cot 64°.
b) Tính \(\frac{{\tan 25^\circ }}{{\cot 65^\circ }},\) tan 34° – cot 56°.
Quảng cáo
Trả lời:

a) Ta có sin 55° = cos(90° – 55°) = cos 35°;
cos 62° = sin(90° – 62°) = sin 28°;
tan 57° = cot(90° – 57°) = cot 33°;
cot 64° = tan(90° – 64°) = tan 26°.
b) Ta có \(\frac{{\tan 25^\circ }}{{\cot 65^\circ }} = \frac{{\tan 25^\circ }}{{\tan \left( {90^\circ - 65^\circ } \right)}} = \frac{{\tan 25^\circ }}{{\tan 25^\circ }} = 1;\)
\(\tan 34^\circ - \cot 56^\circ = \tan 34^\circ - \tan \left( {90^\circ - 56^\circ } \right) = \tan 34^\circ - \tan 34^\circ = 0.\)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) (H.4.5a)

Theo định lí Pythagore, ta có
AC2 + AB2 = BC2
AC2 = BC2 – AB2
\(AC = \sqrt {B{C^2} - A{B^2}} = \sqrt {{{17}^2} - {8^2}} = \sqrt {225} = 15.\)
Từ đó:
• \(\sin B = \cos C = \frac{{AC}}{{BC}} = \frac{{15}}{{17}},\) \(\cos B = \sin C = \frac{{AB}}{{BC}} = \frac{8}{{17}},\)
• \(\tan B = \cot C = \frac{{AC}}{{AB}} = \frac{{15}}{8},\) \(\cot B = \tan C = \frac{{AB}}{{AC}} = \frac{8}{{15}}.\)
b) (H.4.5b)

Theo Pythagore, ta có:
\(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{{1,2}^2} + {{0,9}^2}} = \sqrt {2,25} = 1,5.\)
Từ đó:
• \(\sin B = \cos C = \frac{{AC}}{{BC}} = \frac{{0,9}}{{1,5}} = 0,6,\)
• \(\cos B = \sin C = \frac{{AB}}{{BC}} = \frac{{1,2}}{{1,5}} = 0,8,\)
\(\tan B = \cot C = \frac{{AC}}{{AB}} = \frac{{0,9}}{{1,2}} = 0,75,\)
\(\cot B = \tan C = \frac{{AB}}{{AC}} = \frac{{1,2}}{{0,9}} = \frac{4}{3}.\)
Lời giải
(H.4.8)

Hình chữ nhật ABCD có \(AD = \sqrt 3 ,\) DC = 3. Ta cần tính góc \(\widehat {ADB}.\)
Ta có \(\tan \widehat {ADB} = \frac{{AB}}{{AD}} = \frac{3}{{\sqrt 3 }} = \sqrt 3 .\)
Theo bảng giá trị lượng giác của các góc đặc biệt, ta có \(\widehat {ADB} = 60^\circ .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.