Giải VTH Toán 9 KNTT Bài 11. Tỉ số lượng giác của góc nhọn có đáp án
33 người thi tuần này 4.6 235 lượt thi 13 câu hỏi
🔥 Đề thi HOT:
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
12 bài tập Một số bài toán thực tế liên quan đến độ dài cung tròn, diện tích hình quạt tròn và hình vành khuyên có lời giải
15 câu Trắc nghiệm Toán 9 Chân trời sáng tạo Bài 1. Phương trình quy về phương trình bậc nhất một ẩn có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đáp án đúng là: C
Xét tam giác ABC vuông tại A, ta có:
\(\sin B = \frac{{AC}}{{BC}};\) \(\cos B = \frac{{AB}}{{BC}};\) \(\tan B = \frac{{AC}}{{AB}};\) \(\cot C = \frac{{AC}}{{AB}}.\)
Vậy đáp án đúng là đáp án C.
Lời giải
Đáp án đúng là: D
Xét tam giác ABC vuông tại A có \(\widehat C = 30^\circ ,\) ta có:
\(\widehat B = 90^\circ - \widehat C = 90^\circ - 30^\circ = 60^\circ \) (định lí tổng ba góc trong một tam giác).
Suy ra \[\sin B = \sin 60^\circ = \frac{{\sqrt 3 }}{2};\] \(\cos C = \cos 30^\circ = \frac{{\sqrt 3 }}{2};\)
\[\tan B = \tan 60^\circ = \sqrt 3 ;\] \(\cot B = \cot 60^\circ = \frac{{\sqrt 3 }}{3}.\)
Vậy khẳng định D là khẳng định sai.
Lời giải
Đáp án đúng là: D
Ta thấy α, β là hai góc nhọn trong tam giác vuông ABC nên α, β là hai góc phụ nhau.
Suy ra ta có: sin α = cos β, cos α = sin β, tan α = cot β, cot α = tan β.
Lời giải
Đáp án đúng là: D
Hai góc nhọn α, β là hai góc phụ nhau thì ta có:
sin α = cos β, cos α = sin β, tan α = cot β, cot α = tan β.
Ta thấy:
• \(\sin 82^\circ = \cos \left( {90^\circ - 82^\circ } \right) = \cos 8^\circ \) nên đáp án A sai.
• \(\cos 75^\circ = \sin \left( {90^\circ - 75^\circ } \right) = \sin 15^\circ \) nên đáp án B sai.
• \(\cot 52^\circ = \tan \left( {90^\circ - 52^\circ } \right) = \tan 38^\circ \) nên đáp án C sai.
• \(\tan 30^\circ 40' = \cot \left( {90^\circ - 30^\circ 40'} \right) = \cot 59^\circ 20'\) nên đáp án D đúng.
Lời giải
a) (H.4.5a)

Theo định lí Pythagore, ta có
AC2 + AB2 = BC2
AC2 = BC2 – AB2
\(AC = \sqrt {B{C^2} - A{B^2}} = \sqrt {{{17}^2} - {8^2}} = \sqrt {225} = 15.\)
Từ đó:
• \(\sin B = \cos C = \frac{{AC}}{{BC}} = \frac{{15}}{{17}},\) \(\cos B = \sin C = \frac{{AB}}{{BC}} = \frac{8}{{17}},\)
• \(\tan B = \cot C = \frac{{AC}}{{AB}} = \frac{{15}}{8},\) \(\cot B = \tan C = \frac{{AB}}{{AC}} = \frac{8}{{15}}.\)
b) (H.4.5b)

Theo Pythagore, ta có:
\(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{{1,2}^2} + {{0,9}^2}} = \sqrt {2,25} = 1,5.\)
Từ đó:
• \(\sin B = \cos C = \frac{{AC}}{{BC}} = \frac{{0,9}}{{1,5}} = 0,6,\)
• \(\cos B = \sin C = \frac{{AB}}{{BC}} = \frac{{1,2}}{{1,5}} = 0,8,\)
\(\tan B = \cot C = \frac{{AC}}{{AB}} = \frac{{0,9}}{{1,2}} = 0,75,\)
\(\cot B = \tan C = \frac{{AB}}{{AC}} = \frac{{1,2}}{{0,9}} = \frac{4}{3}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.