Câu hỏi:

15/09/2024 7,228 Lưu

Cho tam giác ABC vuông tại A. Tính các tỉ số lượng giác sin, côsin, tang, côtang của các góc nhọn B và C khi biết:

a) AB = 8 cm, BC = 17 cm;

b) AC = 0,9 cm, AB = 1,2 cm.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) (H.4.5a)

Cho tam giác ABC vuông tại A. Tính các tỉ số lượng giác sin, côsin, tang, côtang của các góc nhọn B và C khi biết: a) AB = 8 cm, BC = 17 cm; b) AC = 0,9 cm, AB = 1,2 cm. (ảnh 1)

Theo định lí Pythagore, ta có

AC2 + AB2 = BC2

AC2 = BC2 – AB2

\(AC = \sqrt {B{C^2} - A{B^2}} = \sqrt {{{17}^2} - {8^2}} = \sqrt {225} = 15.\)

Từ đó:

\(\sin B = \cos C = \frac{{AC}}{{BC}} = \frac{{15}}{{17}},\) \(\cos B = \sin C = \frac{{AB}}{{BC}} = \frac{8}{{17}},\)

\(\tan B = \cot C = \frac{{AC}}{{AB}} = \frac{{15}}{8},\) \(\cot B = \tan C = \frac{{AB}}{{AC}} = \frac{8}{{15}}.\)

b) (H.4.5b)

Cho tam giác ABC vuông tại A. Tính các tỉ số lượng giác sin, côsin, tang, côtang của các góc nhọn B và C khi biết: a) AB = 8 cm, BC = 17 cm; b) AC = 0,9 cm, AB = 1,2 cm. (ảnh 2)

Theo Pythagore, ta có:

\(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{{1,2}^2} + {{0,9}^2}} = \sqrt {2,25} = 1,5.\)

Từ đó:

\(\sin B = \cos C = \frac{{AC}}{{BC}} = \frac{{0,9}}{{1,5}} = 0,6,\)

\(\cos B = \sin C = \frac{{AB}}{{BC}} = \frac{{1,2}}{{1,5}} = 0,8,\)

\(\tan B = \cot C = \frac{{AC}}{{AB}} = \frac{{0,9}}{{1,2}} = 0,75,\)

\(\cot B = \tan C = \frac{{AB}}{{AC}} = \frac{{1,2}}{{0,9}} = \frac{4}{3}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có sin 55° = cos(90° – 55°) = cos 35°;

cos 62° = sin(90° – 62°) = sin 28°;

tan 57° = cot(90° – 57°) = cot 33°;

cot 64° = tan(90° – 64°) = tan 26°.

b) Ta có \(\frac{{\tan 25^\circ }}{{\cot 65^\circ }} = \frac{{\tan 25^\circ }}{{\tan \left( {90^\circ - 65^\circ } \right)}} = \frac{{\tan 25^\circ }}{{\tan 25^\circ }} = 1;\)

\(\tan 34^\circ - \cot 56^\circ = \tan 34^\circ - \tan \left( {90^\circ - 56^\circ } \right) = \tan 34^\circ - \tan 34^\circ = 0.\)

Lời giải

(H.4.8)

Cho hình chữ nhật có chiều dài và chiều rộng lần lượt là 3 và \(\sqrt 3 .\) Tính góc giữa đường chéo và cạnh ngắn hơn của hình chữ nhật (sử dụng bảng giá trị lượng giác của các góc đặc biệt). (ảnh 1)

Hình chữ nhật ABCD có \(AD = \sqrt 3 ,\) DC = 3. Ta cần tính góc \(\widehat {ADB}.\)

Ta có \(\tan \widehat {ADB} = \frac{{AB}}{{AD}} = \frac{3}{{\sqrt 3 }} = \sqrt 3 .\)

Theo bảng giá trị lượng giác của các góc đặc biệt, ta có \(\widehat {ADB} = 60^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP