Câu hỏi:
15/09/2024 2,865Cho tam giác ABC vuông tại A. Tính các tỉ số lượng giác sin, côsin, tang, côtang của các góc nhọn B và C khi biết:
a) AB = 8 cm, BC = 17 cm;
b) AC = 0,9 cm, AB = 1,2 cm.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) (H.4.5a)
Theo định lí Pythagore, ta có
AC2 + AB2 = BC2
AC2 = BC2 – AB2
\(AC = \sqrt {B{C^2} - A{B^2}} = \sqrt {{{17}^2} - {8^2}} = \sqrt {225} = 15.\)
Từ đó:
• \(\sin B = \cos C = \frac{{AC}}{{BC}} = \frac{{15}}{{17}},\) \(\cos B = \sin C = \frac{{AB}}{{BC}} = \frac{8}{{17}},\)
• \(\tan B = \cot C = \frac{{AC}}{{AB}} = \frac{{15}}{8},\) \(\cot B = \tan C = \frac{{AB}}{{AC}} = \frac{8}{{15}}.\)
b) (H.4.5b)
Theo Pythagore, ta có:
\(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{{1,2}^2} + {{0,9}^2}} = \sqrt {2,25} = 1,5.\)
Từ đó:
• \(\sin B = \cos C = \frac{{AC}}{{BC}} = \frac{{0,9}}{{1,5}} = 0,6,\)
• \(\cos B = \sin C = \frac{{AB}}{{BC}} = \frac{{1,2}}{{1,5}} = 0,8,\)
\(\tan B = \cot C = \frac{{AC}}{{AB}} = \frac{{0,9}}{{1,2}} = 0,75,\)
\(\cot B = \tan C = \frac{{AB}}{{AC}} = \frac{{1,2}}{{0,9}} = \frac{4}{3}.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Chọn phương án đúng.
Cho tam giác ABC có \(\widehat A = 90^\circ \) và \(\widehat C = 30^\circ \) như trên Hình 4.3. Tìm khẳng định sai trong các khẳng định sau?
A. \(\sin B = \frac{{\sqrt 3 }}{2}.\)
B. \(\cos C = \frac{{\sqrt 3 }}{2}.\)
C. \(\tan B = \sqrt 3 .\)
D. \(\cot B = \frac{1}{2}.\)
Câu 2:
Chọn phương án đúng.
Cho tam giác ABC có \(\widehat A = 90^\circ \) (H.4.2).
A. \(\sin B = \frac{{AB}}{{BC}}.\)
B. \(\cos C = \frac{{AC}}{{AB}}.\)
C. \(\tan B = \frac{{AC}}{{AB}}.\)
D. \(\cot C = \frac{{AB}}{{BC}}.\)
Câu 3:
Cho tam giác ABC vuông tại A, biết AB = 6 cm, AC = 8 cm.
a) Tính tan B, cạnh BC, sin B, góc B (làm tròn đến độ).
b) Kẻ đường cao AH. Tính AH, BH, \(\cos \widehat {BAH}.\)
Câu 4:
a) Viết các tỉ số lượng giác sau thành tỉ số lượng giác của các góc nhỏ hơn 45°:
sin 55°, cos 62°, tan 57°, cot 64°.
b) Tính \(\frac{{\tan 25^\circ }}{{\cot 65^\circ }},\) tan 34° – cot 56°.
Câu 5:
Dùng MTCT, tìm số đo của góc nhọn x (làm tròn đến phút), biết rằng:
a) sin x = 0,2368;
b) cos x = 0,6224;
c) tan x = 1,236;
d) cot x = 2,154.
Câu 6:
Cho hình chữ nhật có chiều dài và chiều rộng lần lượt là 3 và \(\sqrt 3 .\) Tính góc giữa đường chéo và cạnh ngắn hơn của hình chữ nhật (sử dụng bảng giá trị lượng giác của các góc đặc biệt).
về câu hỏi!