Câu hỏi:
15/09/2024 638
Cho tam giác vuông có một góc nhọn 30° và cạnh đối với góc này bằng 5 cm. Tính độ dài cạnh huyền của tam giác.
Quảng cáo
Trả lời:
(H.4.7)

Xét tam giác ABC vuông tại A, có AB = 5, \(\widehat C = 30^\circ .\)
Ta cần tính cạnh BC.
Trong tam giác ABC vuông, ta có
\(\sin C = \frac{{AB}}{{BC}}\) hay \(\sin 30^\circ = \frac{{AB}}{{BC}},\) suy ra \(\frac{1}{2} = \frac{{AB}}{{BC}},\) hay BC = 2AB = 2.5 = 10 (cm).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) (H.4.5a)

Theo định lí Pythagore, ta có
AC2 + AB2 = BC2
AC2 = BC2 – AB2
\(AC = \sqrt {B{C^2} - A{B^2}} = \sqrt {{{17}^2} - {8^2}} = \sqrt {225} = 15.\)
Từ đó:
• \(\sin B = \cos C = \frac{{AC}}{{BC}} = \frac{{15}}{{17}},\) \(\cos B = \sin C = \frac{{AB}}{{BC}} = \frac{8}{{17}},\)
• \(\tan B = \cot C = \frac{{AC}}{{AB}} = \frac{{15}}{8},\) \(\cot B = \tan C = \frac{{AB}}{{AC}} = \frac{8}{{15}}.\)
b) (H.4.5b)

Theo Pythagore, ta có:
\(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{{1,2}^2} + {{0,9}^2}} = \sqrt {2,25} = 1,5.\)
Từ đó:
• \(\sin B = \cos C = \frac{{AC}}{{BC}} = \frac{{0,9}}{{1,5}} = 0,6,\)
• \(\cos B = \sin C = \frac{{AB}}{{BC}} = \frac{{1,2}}{{1,5}} = 0,8,\)
\(\tan B = \cot C = \frac{{AC}}{{AB}} = \frac{{0,9}}{{1,2}} = 0,75,\)
\(\cot B = \tan C = \frac{{AB}}{{AC}} = \frac{{1,2}}{{0,9}} = \frac{4}{3}.\)
Lời giải
(H.4.9)

a) Trong tam giác ABC vuông có
\(\tan B = \frac{{AC}}{{AB}} = \frac{8}{6} = \frac{4}{3}.\)
Theo định lí Pythagore, ta có
BC2 = AC2 + AB2 = 82 + 62 = 100.
\(BC = \sqrt {100} = 10.\)
Ta có \(\sin B = \frac{{AC}}{{BC}} = \frac{8}{{10}} = \frac{4}{5},\) từ đó suy ra \(\widehat B \approx 53^\circ .\)
b) Trong tam giác vuông ABH có:
\(\sin B = \frac{{AH}}{{AB}},\) suy ra \(AH = AB.\sin B = 6.\frac{4}{5} = \frac{{24}}{5};\)
\(\tan B = \frac{{AH}}{{BH}},\) suy ra \(BH = \frac{{AH}}{{\tan B}} = \frac{{24}}{5}:\frac{4}{3} = \frac{{24}}{5}.\frac{3}{4} = \frac{{18}}{5}.\)
\(\cos \widehat {BAH} = \sin \widehat {ABC} = \frac{4}{3}\) (vì \(\widehat {BAH}\) và góc \(\widehat {ABC}\) là hai góc phụ nhau).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.