Câu hỏi:

15/09/2024 642

Chọn phương án đúng.

Cho tam giác ABC có \(\widehat A = 90^\circ \) (H.4.2).

Chọn phương án đúng.  Cho tam giác ABC có (ảnh 1)

A. \(\sin B = \frac{{AB}}{{BC}}.\)

B. \(\cos C = \frac{{AC}}{{AB}}.\)

C. \(\tan B = \frac{{AC}}{{AB}}.\)

D. \(\cot C = \frac{{AB}}{{BC}}.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Xét tam giác ABC vuông tại A, ta có:

\(\sin B = \frac{{AC}}{{BC}};\) \(\cos B = \frac{{AB}}{{BC}};\) \(\tan B = \frac{{AC}}{{AB}};\) \(\cot C = \frac{{AC}}{{AB}}.\)

Vậy đáp án đúng là đáp án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) (H.4.5a)

Cho tam giác ABC vuông tại A. Tính các tỉ số lượng giác sin, côsin, tang, côtang của các góc nhọn B và C khi biết: a) AB = 8 cm, BC = 17 cm; b) AC = 0,9 cm, AB = 1,2 cm. (ảnh 1)

Theo định lí Pythagore, ta có

AC2 + AB2 = BC2

AC2 = BC2 – AB2

\(AC = \sqrt {B{C^2} - A{B^2}} = \sqrt {{{17}^2} - {8^2}} = \sqrt {225} = 15.\)

Từ đó:

\(\sin B = \cos C = \frac{{AC}}{{BC}} = \frac{{15}}{{17}},\) \(\cos B = \sin C = \frac{{AB}}{{BC}} = \frac{8}{{17}},\)

\(\tan B = \cot C = \frac{{AC}}{{AB}} = \frac{{15}}{8},\) \(\cot B = \tan C = \frac{{AB}}{{AC}} = \frac{8}{{15}}.\)

b) (H.4.5b)

Cho tam giác ABC vuông tại A. Tính các tỉ số lượng giác sin, côsin, tang, côtang của các góc nhọn B và C khi biết: a) AB = 8 cm, BC = 17 cm; b) AC = 0,9 cm, AB = 1,2 cm. (ảnh 2)

Theo Pythagore, ta có:

\(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{{1,2}^2} + {{0,9}^2}} = \sqrt {2,25} = 1,5.\)

Từ đó:

\(\sin B = \cos C = \frac{{AC}}{{BC}} = \frac{{0,9}}{{1,5}} = 0,6,\)

\(\cos B = \sin C = \frac{{AB}}{{BC}} = \frac{{1,2}}{{1,5}} = 0,8,\)

\(\tan B = \cot C = \frac{{AC}}{{AB}} = \frac{{0,9}}{{1,2}} = 0,75,\)

\(\cot B = \tan C = \frac{{AB}}{{AC}} = \frac{{1,2}}{{0,9}} = \frac{4}{3}.\)

Lời giải

(H.4.9)

Cho tam giác ABC vuông tại A, biết AB = 6 cm, AC = 8 cm. a) Tính tan B, cạnh BC, sin B, góc B (làm tròn đến độ). b) Kẻ đường cao AH. Tính AH, BH, \(\cos \widehat {BAH}.\) (ảnh 1)

a) Trong tam giác ABC vuông có

\(\tan B = \frac{{AC}}{{AB}} = \frac{8}{6} = \frac{4}{3}.\)

Theo định lí Pythagore, ta có

BC2 = AC2 + AB2 = 82 + 62 = 100.

\(BC = \sqrt {100} = 10.\)

Ta có \(\sin B = \frac{{AC}}{{BC}} = \frac{8}{{10}} = \frac{4}{5},\) từ đó suy ra \(\widehat B \approx 53^\circ .\)

b) Trong tam giác vuông ABH có:

\(\sin B = \frac{{AH}}{{AB}},\) suy ra \(AH = AB.\sin B = 6.\frac{4}{5} = \frac{{24}}{5};\)

\(\tan B = \frac{{AH}}{{BH}},\) suy ra \(BH = \frac{{AH}}{{\tan B}} = \frac{{24}}{5}:\frac{4}{3} = \frac{{24}}{5}.\frac{3}{4} = \frac{{18}}{5}.\)

\(\cos \widehat {BAH} = \sin \widehat {ABC} = \frac{4}{3}\) (vì \(\widehat {BAH}\) và góc \(\widehat {ABC}\) là hai góc phụ nhau).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP