Câu hỏi:
15/09/2024 234Câu hỏi trong đề: Giải VTH Toán 9 KNTT Luyện tập chung có đáp án !!
Quảng cáo
Trả lời:
(H.4.25b)

Kí hiệu các điểm như trên Hình 4.25b.
Trong tam giác vuông ABO, ta có
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Độ sâu cần tính là đoạn BH.
Trong tam giác ABH, ta có
\(h = BH = AH.\sin A = 200.\sin 21^\circ \approx 72\) (m).
b) Đổi 9 km = 9 000 m.
Để lặn được 9 000 m, tàu cần 60 phút.
Để lặn sâu 1 m, tài cần \(\frac{{60}}{{9000}}\) phút. Do đó, để lặn sâu 200 m tàu cần
\(200 \cdot \frac{{60}}{{9\,\,000}} = \frac{{12\,\,000}}{{9\,\,000}} = \frac{4}{3}\) (phút) = 80 (giây).
Lời giải
Kẻ đường cao AH của tam giác ABC thì C nằm giữa B và H.
Trong tam giác ACH, ta có
\(\widehat {ACH} = 180^\circ - 120^\circ = 60^\circ ,\)
\(HC = AC.\cos \widehat {ACH} = 90.\cos 60^\circ = 90.\frac{1}{2} = 45\) (m),
\(AH = AC.\sin \widehat {ACH} = 90.\sin 60^\circ = 90.\frac{{\sqrt 3 }}{2} = 45\sqrt 3 \) (m).
Từ đó BH = BC + HC = 150 + 45 = 195 (m),
\(A{B^2} = A{H^2} + B{H^2} = {\left( {45\sqrt 3 } \right)^2} + {195^2} = 44100\) suy ra \(AB = \sqrt {44100} = 210\) (m).
Vậy AB = 210 m.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.