Câu hỏi:
17/09/2024 148
Chọn phương án đúng.
Cho đường tròn (O; R), vẽ dây \(AB = \sqrt 2 R\) (H.5.8). Số đo của cung AmB là
A. 45°.
B. 90°.
C. 270°.
D. 60°.
Chọn phương án đúng.
Cho đường tròn (O; R), vẽ dây \(AB = \sqrt 2 R\) (H.5.8). Số đo của cung AmB là

A. 45°.
B. 90°.
C. 270°.
D. 60°.
Quảng cáo
Trả lời:
Đáp án đúng là: B
Xét đường tròn (O), ta có số đo ở cung AmB bằng số đo góc \(\widehat {AOB}.\)
Ta có OA = OB = R và \(AB = \sqrt 2 R\)
Mà \[O{A^2} + O{B^2} = 2{R^2} = A{B^2}\] nên tam giác OAB là tam giác vuông cân (định lí Pythagore đảo).
Do đó
Vậy số đo của cung AmB là 90°.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
(H.5.10)

Theo giả thiết, ta có OA = OB = 5 cm; AB = 6 cm.
a) Gọi C là trung điểm của AB, ta có AC = BC = 3 cm.
Trong tam giác OAB cân tại O (OA = OB) có OC là đường trung tuyến nên cũng là đường cao, nghĩa là OC ⊥ AB.
Do đó, OC là khoảng cách từ O đến đường thẳng AB.
Trong tam giác vuông AOC, ta có:
\(O{C^2} = O{A^2} - A{C^2} = {5^2} - {3^2} = 16,\) suy ra \[OC = \sqrt {16} = 4\] cm.
Vậy khoảng cách từ O đến đường thẳng AB là 4 cm.
b) Trong tam giác cân OAB, đường trung tuyến OC cũng là đường phân giác, mà \(\widehat {AOB} = 2\alpha \) nên \(\widehat {AOC} = \frac{1}{2}\widehat {AOB} = \alpha .\)
Xét tam giác AOC vuông tại C, ta có: \(\tan \alpha = \tan \widehat {AOC} = \frac{{AC}}{{OC}} = \frac{3}{4}.\)
Lời giải
a) Trong 1 giờ (60 phút), đầu kim phút vạch nên cả vòng tròn 360°.
Do đó trong 36 phút, đầu kim phút vạch một cung có số đo là
\(\frac{{36}}{{60}}.360^\circ = 216^\circ .\)
b) Trong 12 giờ (720 phút), đầu kim giờ vạch nên cả vòng tròn 360°.
Do đó trong 36 phút, đầu kim giờ vạch nên một cung có số đo là
\(\frac{{36}}{{720}}.360^\circ = 18^\circ .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.