Câu hỏi:
18/09/2024 1,439
Xét tính đơn điệu và tìm cực trị của các hàm số:
a) \(y = \frac{{3x + 1}}{{x - 2}};\)
b) \(y = \frac{{2x - 5}}{{3x + 1}};\)
c) \(y = \sqrt {4 - {x^2}} \);
d) \(y = x - \ln x\).
Xét tính đơn điệu và tìm cực trị của các hàm số:
a) \(y = \frac{{3x + 1}}{{x - 2}};\)
b) \(y = \frac{{2x - 5}}{{3x + 1}};\)
c) \(y = \sqrt {4 - {x^2}} \);
d) \(y = x - \ln x\).
Quảng cáo
Trả lời:
a) \(y = \frac{{3x + 1}}{{x - 2}}\)
Tập xác định: D = ℝ\{2}.
Ta có: y' = \(\frac{{ - 7}}{{{{\left( {x - 2} \right)}^2}}}\) < 0, với mọi x ∈ D.
Bảng biến thiên:

Do đó, hàm nghịch biến trên các khoảng (−∞; 2) và (2; +∞).
Hàm số không có cực trị.
b) \(y = \frac{{2x - 5}}{{3x + 1}}\)
Tập xác định: D = ℝ\\(\left\{ {\frac{{ - 1}}{3}} \right\}\).
Ta có: y' = \(\frac{{10}}{{{{\left( {3x + 1} \right)}^2}}}\) > 0, với mọi x ∈ D.
Bảng biến thiên:

Hàm số đồng biến trên các khoảng \(\left( { - \infty ;\frac{{ - 1}}{3}} \right)\) và \(\left( { - \frac{1}{3}; + \infty } \right)\).
Hàm số không có cực trị.
c) \(y = \sqrt {4 - {x^2}} \)
Tập xác định: D = [−2; 2].
Ta có: y' = \(\frac{{ - x}}{{\sqrt {4 - {x^2}} }}\) ⇔ y' = 0 ⇔ x = 0.
Ta có bảng biến thiên như sau:

Hàm số đồng biến trên khoảng (−2; 0) và nghịch biến trên khoảng (0; 2).
Hàm số đạt cực đại tại x = 0, yCĐ = 2.
d) \(y = x - \ln x\)
Tập xác định: D = (0; +∞).
Ta có: y' = 1 – \(\frac{1}{x}\) = \(\frac{{x - 1}}{x}\) ⇔ y' = 0 ⇔ x = 1.
Ta có bảng biến thiên như sau:

Hàm số đồng biến trên khoảng (1; +∞).
Hàm số nghịch biến trên khoảng (0; 1).
Hàm số đạt cực tiểu tại x = 1, yCT = 1.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lợi nhuận xưởng thu được trong một ngày khi sản xuất x (kg) thành phẩm là:
P(x) = 513x – (2x3 – 30x2 + 177x + 2 592) = −2x3 + 30x2 + 336x – 2 592 với 0 ≤ x ≤ 20.
Ta có: P'(x) = −6x2 + 60x + 336
P'(x) = 0 ⇔ x = 14 hoặc x = −4 (loại do −4 ∉ [0; 20]).
Ta có bảng biến thiên:

Do đó \(\mathop {\max }\limits_{\left[ {0;20} \right]} P\left( x \right) = P\left( {14} \right) = 2504\).
Vậy x = 14 kg.
Lời giải
Ta có: h(t) = \( - \frac{4}{{255}}{t^3} + \frac{{49}}{{85}}{t^2} - \frac{{98}}{{17}}t + 20\) với 0 ≤ t ≤ 20.
h'(t) = \( - \frac{{12}}{{255}}{t^2} + \frac{{98}}{{85}}{t^2} - \frac{{98}}{{17}}\)
h'(t) = 0 ⇔ x = 7 hoặc x = \(\frac{{37}}{5}\).
Bảng xét dấu:

Do đó, tàu lượn đi xuống khi t trong các khoảng (0; 7) và \(\left( {\frac{{37}}{5};20} \right)\), tàu lượn đi lên khi t trong khoảng \(\left( {7;\frac{{37}}{5}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.