Xét tính đơn điệu và tìm cực trị của các hàm số:
a) \(y = \frac{{{x^2} + 8}}{{x + 1}}\);
b) \(y = \frac{{{x^2} - 8x + 10}}{{x - 2}}\);
c) \(y = \frac{{ - 2{x^2} + x + 2}}{{2x - 1}}\);
d) \(y = \frac{{ - {x^2} - 6x - 25}}{{x + 3}}.\)
Xét tính đơn điệu và tìm cực trị của các hàm số:
a) \(y = \frac{{{x^2} + 8}}{{x + 1}}\);
b) \(y = \frac{{{x^2} - 8x + 10}}{{x - 2}}\);
c) \(y = \frac{{ - 2{x^2} + x + 2}}{{2x - 1}}\);
d) \(y = \frac{{ - {x^2} - 6x - 25}}{{x + 3}}.\)
Quảng cáo
Trả lời:
a) \(y = \frac{{{x^2} + 8}}{{x + 1}}\)
Tập xác định: D = ℝ\{−1}.
Ta có: y' = \(\frac{{2x\left( {x + 1} \right) - {x^2} - 8}}{{{{\left( {x + 1} \right)}^2}}}\) = \(\frac{{{x^2} + 2x - 8}}{{{{\left( {x + 1} \right)}^2}}}\)
y' = 0 ⇔ x2 + 2x – 8 = 0 ⇔ x = 2 hoặc x = −4.
Ta có bảng biến thiên:

Hàm số đồng biến trên các khoảng (−∞; −4) và (2; +∞).
Hàm số nghịch biến trên các khoảng (−4; −1) và (−1; 2).
Hàm số đạt cực đại tại x = −4, yCĐ = −8.
Hàm số đạt cực tiểu tại x = 2, yCT = 4.
b) \(y = \frac{{{x^2} - 8x + 10}}{{x - 2}}\)
Tập xác định: D = ℝ\{2}.
Ta có: y' = \(\frac{{\left( {2x - 8} \right)\left( {x - 2} \right) - {x^2} + 8x - 10}}{{{{\left( {x - 2} \right)}^2}}}\) = \(\frac{{{x^2} - 4x + 6}}{{{{\left( {x - 2} \right)}^2}}}\) = \(\frac{{{{\left( {x - 2} \right)}^2} + 2}}{{{{\left( {x - 2} \right)}^2}}}\) .
Nhận thấy y' > 0, với mọi x ∈ D.
Ta có bảng biến thiên như sau:

Hàm số đồng biến trên các khoảng (−∞; 2) và (2; +∞).
Hàm số không có cực trị.
c) \(y = \frac{{ - 2{x^2} + x + 2}}{{2x - 1}}\)
Tập xác định: D = ℝ\\(\left\{ {\frac{1}{2}} \right\}\).
Ta có: y' = \(\frac{{\left( { - 4x + 1} \right)\left( {2x - 1} \right) - 2\left( { - 2{x^2} + x + 2} \right)}}{{{{\left( {2x - 1} \right)}^2}}}\) = \(\frac{{ - 4{x^2} + 4x - 5}}{{{{\left( {2x - 1} \right)}^2}}}\)= \(\frac{{{{\left( {2x - 1} \right)}^2} - 6}}{{{{\left( {2x - 1} \right)}^2}}}\)
Nhận thấy y' < 0, với mọi x ∈ D.
Ta có bảng biến thiên:

Hàm số nghịch biến trên các khoảng \(\left( { - \infty ;\frac{1}{2}} \right)\) và \(\left( {\frac{1}{2}; + \infty } \right)\).
Hàm số không có cực trị.
d) \(y = \frac{{ - {x^2} - 6x - 25}}{{x + 3}}.\)
Tập xác định: D = ℝ\{−3}.
Ta có: y' =\(\frac{{\left( { - 2x - 6} \right)\left( {x + 3} \right) + {x^2} + 6x + 25}}{{{{\left( {x + 3} \right)}^2}}}\) = \(\frac{{ - {x^2} - 6x + 7}}{{{{\left( {x + 3} \right)}^2}}}\)
y' = 0 ⇔ \(\frac{{ - {x^2} - 6x + 7}}{{{{\left( {x + 3} \right)}^2}}}\) = 0 ⇔ x = 1 hoặc x = −7.
Bảng biến thiên:

Hàm số đồng biến trên các khoảng (−7; −3) và (−3; 1).
Hàm số nghịch biến trên các khoảng (−∞; −7) và (1; +∞).
Hàm số đạt cực đại tại x = 1, yCĐ = −8.
Hàm số đạt cực tiểu tại x = −7, yCT = 8.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lợi nhuận xưởng thu được trong một ngày khi sản xuất x (kg) thành phẩm là:
P(x) = 513x – (2x3 – 30x2 + 177x + 2 592) = −2x3 + 30x2 + 336x – 2 592 với 0 ≤ x ≤ 20.
Ta có: P'(x) = −6x2 + 60x + 336
P'(x) = 0 ⇔ x = 14 hoặc x = −4 (loại do −4 ∉ [0; 20]).
Ta có bảng biến thiên:

Do đó \(\mathop {\max }\limits_{\left[ {0;20} \right]} P\left( x \right) = P\left( {14} \right) = 2504\).
Vậy x = 14 kg.
Lời giải
Ta có: h(t) = \( - \frac{4}{{255}}{t^3} + \frac{{49}}{{85}}{t^2} - \frac{{98}}{{17}}t + 20\) với 0 ≤ t ≤ 20.
h'(t) = \( - \frac{{12}}{{255}}{t^2} + \frac{{98}}{{85}}{t^2} - \frac{{98}}{{17}}\)
h'(t) = 0 ⇔ x = 7 hoặc x = \(\frac{{37}}{5}\).
Bảng xét dấu:

Do đó, tàu lượn đi xuống khi t trong các khoảng (0; 7) và \(\left( {\frac{{37}}{5};20} \right)\), tàu lượn đi lên khi t trong khoảng \(\left( {7;\frac{{37}}{5}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.