Chứng minh rằng:
a) Phương trình x3 + 5x2 – 8x + 4 = 0 có duy nhất một nghiệm.
b) Phương trình −x3 + 3x2 + 24x – 1 = 0 có ba nghiệm phân biệt.
Chứng minh rằng:
a) Phương trình x3 + 5x2 – 8x + 4 = 0 có duy nhất một nghiệm.
b) Phương trình −x3 + 3x2 + 24x – 1 = 0 có ba nghiệm phân biệt.
Quảng cáo
Trả lời:
a) Đặt f(x) = x3 + 5x2 – 8x + 4
Khi đó, f'(x) = 3x2 + 10x – 8.
f'(x) = 0 ⇔ x = \(\frac{2}{3}\) hoặc x = −4.
Ta có bảng biến thiên như sau:

Từ bảng biến thiên, ta thấy đường thẳng y = 0 giao với đồ thị của hàm số tại đúng một thời điểm trong khoảng (−∞; −4).
Do đó, phương trình x3 + 5x2 – 8x + 4 = 0 có duy nhất một nghiệm.
b) Đặt f(x) = −x3 + 3x2 + 24x + 1
Ta có: f'(x) = −3x2 + 6x + 24
f'(x) = 0 ⇔ x = −2 hoặc x = 4.
Ta có bảng biến thiên như sau:

Từ bảng biến thiên, ta thấy đường thẳng y = 0 giao với đồ thị của hàm số tại ba điểm phân biệt.
Do đó, phương trình −x3 + 3x2 + 24x – 1 = 0 có ba nghiệm phân biệt.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lợi nhuận xưởng thu được trong một ngày khi sản xuất x (kg) thành phẩm là:
P(x) = 513x – (2x3 – 30x2 + 177x + 2 592) = −2x3 + 30x2 + 336x – 2 592 với 0 ≤ x ≤ 20.
Ta có: P'(x) = −6x2 + 60x + 336
P'(x) = 0 ⇔ x = 14 hoặc x = −4 (loại do −4 ∉ [0; 20]).
Ta có bảng biến thiên:

Do đó \(\mathop {\max }\limits_{\left[ {0;20} \right]} P\left( x \right) = P\left( {14} \right) = 2504\).
Vậy x = 14 kg.
Lời giải
Ta có: h(t) = \( - \frac{4}{{255}}{t^3} + \frac{{49}}{{85}}{t^2} - \frac{{98}}{{17}}t + 20\) với 0 ≤ t ≤ 20.
h'(t) = \( - \frac{{12}}{{255}}{t^2} + \frac{{98}}{{85}}{t^2} - \frac{{98}}{{17}}\)
h'(t) = 0 ⇔ x = 7 hoặc x = \(\frac{{37}}{5}\).
Bảng xét dấu:

Do đó, tàu lượn đi xuống khi t trong các khoảng (0; 7) và \(\left( {\frac{{37}}{5};20} \right)\), tàu lượn đi lên khi t trong khoảng \(\left( {7;\frac{{37}}{5}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.