Câu hỏi:

18/09/2024 911

Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau:

a) \(y = \frac{{2x + 1}}{{x - 3}}\) trên nửa khoảng (3; 4];

b) \(y = \frac{{3x + 7}}{{2x - 5}}\) trên nửa khoảng \(\left[ { - 5;\frac{5}{2}} \right)\);

c) \(y = \frac{{3x + 2}}{{x + 1}}\) trên đoạn [0; 4].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) \(y = \frac{{2x + 1}}{{x - 3}}\) trên nửa khoảng (3; 4]

Tập xác định: D = ℝ\{3}.

Ta có: y' = \(\frac{{ - 7}}{{{{\left( {x - 3} \right)}^2}}}\) < 0, với mọi x (3; 4].

Hàm số nghịch biến trên (3; 4].

Có: \(\mathop {\lim }\limits_{x \to {3^ + }} y\) = +∞, y(4) = 9.

Do đó, \(\mathop {\min }\limits_{\left( {3;4} \right]} y\) = y(4) = 9, hàm số không có giá trị lớn nhất trên (3; 4].

b) \(y = \frac{{3x + 7}}{{2x - 5}}\) trên nửa khoảng \(\left[ { - 5;\frac{5}{2}} \right)\)

Tập xác định: D = ℝ\\(\left\{ {\frac{5}{2}} \right\}\).

Ta có: y' = \(\frac{{ - 29}}{{{{\left( {2x - 5} \right)}^2}}}\) < 0, với mọi x \(\left[ { - 5;\frac{5}{2}} \right)\).

Hàm số nghịch biến trên \(\left[ { - 5;\frac{5}{2}} \right)\).

Do đó, \(\mathop {\max }\limits_{\left[ { - 5;\frac{5}{2}} \right)} y = y\left( { - 5} \right)\) = \(\frac{8}{{15}}\), hàm số không có giá trị nhỏ nhất trên \(\left[ { - 5;\frac{5}{2}} \right)\).

c) \(y = \frac{{3x + 2}}{{x + 1}}\) trên đoạn [0; 4]

Tập xác định: D = ℝ\{−1}.

Ta có: y' = \(\frac{1}{{{{\left( {x + 1} \right)}^2}}}\) > 0 với mọi x [0; 4].

Hàm số đồng biến trên [0; 4], do đó: \(\mathop {\min }\limits_{\left[ {0;{\rm{ }}4} \right]} y = y\left( 0 \right)\) = 2, \(\mathop {\max }\limits_{\left[ {0;{\rm{ }}4} \right]} y\) = y(4) = \(\frac{{14}}{5}\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lợi nhuận xưởng thu được trong một ngày khi sản xuất x (kg) thành phẩm là:

P(x) = 513x – (2x3 – 30x2 + 177x + 2 592) = −2x3 + 30x2 + 336x – 2 592 với 0 ≤ x ≤ 20.

Ta có: P'(x) = −6x2 + 60x + 336

           P'(x) = 0 x = 14 hoặc x = −4 (loại do −4 [0; 20]).

Ta có bảng biến thiên:

Trong một ngày, tổng chi phí để một xưởng sản xuất x (kg) thành phẩm được cho bởi hàm số C(x) = 2x^3 – 30x^2 + 177x + 2 592 (nghìn đồng). Biết giá bán mỗi kilôgam thành phẩm là (ảnh 1)

Do đó \(\mathop {\max }\limits_{\left[ {0;20} \right]} P\left( x \right) = P\left( {14} \right) = 2504\).

Vậy x = 14 kg.

 

Lời giải

Ta có: h(t) = \( - \frac{4}{{255}}{t^3} + \frac{{49}}{{85}}{t^2} - \frac{{98}}{{17}}t + 20\) với 0 ≤ t ≤ 20.

           h'(t) = \( - \frac{{12}}{{255}}{t^2} + \frac{{98}}{{85}}{t^2} - \frac{{98}}{{17}}\)

          h'(t) = 0 x = 7 hoặc x = \(\frac{{37}}{5}\).

Bảng xét dấu:

Độ cao (tính bằng mét) của tàu lượn siêu tốc so với mặt đất sau t (giây) (0 ≤ t ≤ 20) từ lúc bắt đầu được cho bởi công thức  (ảnh 1)

Do đó, tàu lượn đi xuống khi t trong các khoảng (0; 7) và \(\left( {\frac{{37}}{5};20} \right)\), tàu lượn đi lên khi t trong khoảng \(\left( {7;\frac{{37}}{5}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Một chủ nhà hàng kinh doanh phần ăn uống đồng giá có chiến lược kinh doanh như sau:

Ÿ Phí cố định được ước tính trong một năm là 50 000 nghìn đồng.

Ÿ Chi phí một phần ăn ước tính khoảng 22 nghìn đồng.

Ÿ Giá niêm yết trên thực đơn là 30 nghìn đồng.

Trong bài này, giả định rằng tất cả các phần ăn chế biến sẵn đều được bán hết và kí hiệu x là số phần ăn tự phục vụ trong một năm, giả sử x thuộc khoảng [5 000; 25 000].

a) Gọi C(x) là tổng chi phí hằng năm cho x phần ăn này. Xác định C(x).

b) Chứng tỏ rằng giá thành của một phần ăn cho bởi biểu thức D(x) = 22 + \(\frac{{50000}}{x}\) (nghìn đồng).

c) Sử dụng đồ thị, hãy xác định điểm hòa vốn của nhà hàng, tức là số lượng phần ăn tối thiểu phải được phục vụ hằng năm để hoạt động của nhà hàng tạo ra lợi nhuận. Hãy chứng minh điều đó.

d) Chứng minh rằng tổng lợi nhuận hằng năm cho x phần ăn được biểu thị bởi:

L(x) = 8x – 50 000 (nghìn đồng).

e) Mục tiêu của chủ nhà hàng là tạo ra lợi nhuận ít nhất là 120 000 nghìn đồng mỗi năm. Biết rằng nhà hàng mở cửa 300 ngày một năm, hỏi trung bình mỗi ngày nhà phàng phải phục vụ ít nhất bao nhiêu phần ăn để đạt được mục tiêu trên.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay