Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau:
a) \(y = \frac{{2x + 1}}{{x - 3}}\) trên nửa khoảng (3; 4];
b) \(y = \frac{{3x + 7}}{{2x - 5}}\) trên nửa khoảng \(\left[ { - 5;\frac{5}{2}} \right)\);
c) \(y = \frac{{3x + 2}}{{x + 1}}\) trên đoạn [0; 4].
Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau:
a) \(y = \frac{{2x + 1}}{{x - 3}}\) trên nửa khoảng (3; 4];
b) \(y = \frac{{3x + 7}}{{2x - 5}}\) trên nửa khoảng \(\left[ { - 5;\frac{5}{2}} \right)\);
c) \(y = \frac{{3x + 2}}{{x + 1}}\) trên đoạn [0; 4].
Quảng cáo
Trả lời:
a) \(y = \frac{{2x + 1}}{{x - 3}}\) trên nửa khoảng (3; 4]
Tập xác định: D = ℝ\{3}.
Ta có: y' = \(\frac{{ - 7}}{{{{\left( {x - 3} \right)}^2}}}\) < 0, với mọi x ∈ (3; 4].
Hàm số nghịch biến trên (3; 4].
Có: \(\mathop {\lim }\limits_{x \to {3^ + }} y\) = +∞, y(4) = 9.
Do đó, \(\mathop {\min }\limits_{\left( {3;4} \right]} y\) = y(4) = 9, hàm số không có giá trị lớn nhất trên (3; 4].
b) \(y = \frac{{3x + 7}}{{2x - 5}}\) trên nửa khoảng \(\left[ { - 5;\frac{5}{2}} \right)\)
Tập xác định: D = ℝ\\(\left\{ {\frac{5}{2}} \right\}\).
Ta có: y' = \(\frac{{ - 29}}{{{{\left( {2x - 5} \right)}^2}}}\) < 0, với mọi x ∈ \(\left[ { - 5;\frac{5}{2}} \right)\).
Hàm số nghịch biến trên \(\left[ { - 5;\frac{5}{2}} \right)\).
Do đó, \(\mathop {\max }\limits_{\left[ { - 5;\frac{5}{2}} \right)} y = y\left( { - 5} \right)\) = \(\frac{8}{{15}}\), hàm số không có giá trị nhỏ nhất trên \(\left[ { - 5;\frac{5}{2}} \right)\).
c) \(y = \frac{{3x + 2}}{{x + 1}}\) trên đoạn [0; 4]
Tập xác định: D = ℝ\{−1}.
Ta có: y' = \(\frac{1}{{{{\left( {x + 1} \right)}^2}}}\) > 0 với mọi x ∈ [0; 4].
Hàm số đồng biến trên [0; 4], do đó: \(\mathop {\min }\limits_{\left[ {0;{\rm{ }}4} \right]} y = y\left( 0 \right)\) = 2, \(\mathop {\max }\limits_{\left[ {0;{\rm{ }}4} \right]} y\) = y(4) = \(\frac{{14}}{5}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lợi nhuận xưởng thu được trong một ngày khi sản xuất x (kg) thành phẩm là:
P(x) = 513x – (2x3 – 30x2 + 177x + 2 592) = −2x3 + 30x2 + 336x – 2 592 với 0 ≤ x ≤ 20.
Ta có: P'(x) = −6x2 + 60x + 336
P'(x) = 0 ⇔ x = 14 hoặc x = −4 (loại do −4 ∉ [0; 20]).
Ta có bảng biến thiên:

Do đó \(\mathop {\max }\limits_{\left[ {0;20} \right]} P\left( x \right) = P\left( {14} \right) = 2504\).
Vậy x = 14 kg.
Lời giải
Gọi x (dm) là độ dài cạnh đáy của chiếc hộp hình hộp chữ nhật (x > 0).
Khi đó, chiều cao của chiếc hộp là \(\frac{{10}}{{{x^2}}}\) (dm).
Diện tích toàn phần của chiếc hộp là
S = 2Sđáy + Sxq = 2x2 + 4x.\(\frac{{10}}{{{x^2}}}\) = 2x2 + \(\frac{{40}}{x}\) (dm2).
Ta có: S' = 4x – \(\frac{{40}}{{{x^2}}}\)
S' = 0 ⇔ x = \(\sqrt[3]{{10}}\).
Ta có bảng xét dấu như sau:

Do đó, diện tích toàn phần nhỏ nhất là S = \(6\sqrt[3]{{100}}\) dm2 khi x = \(\sqrt[3]{{10}}\) dm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
