Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau:
a) \(y = \frac{{4{x^2} - 2x + 9}}{{2x - 1}}\) trên khoảng (1; +∞);
b) \(y = \frac{{{x^2} - 2}}{{2x + 1}}\) trên nửa khoảng [0; +∞);
c) \(y = \frac{{9{x^2} + 3x + 7}}{{3x - 1}}\) trên nửa khoảng \(\left( {\frac{1}{3};5} \right]\);
d) \(y = \frac{{2{x^2} + 3x - 3}}{{2x + 5}}\) trên đoạn [−2; 4].
Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau:
a) \(y = \frac{{4{x^2} - 2x + 9}}{{2x - 1}}\) trên khoảng (1; +∞);
b) \(y = \frac{{{x^2} - 2}}{{2x + 1}}\) trên nửa khoảng [0; +∞);
c) \(y = \frac{{9{x^2} + 3x + 7}}{{3x - 1}}\) trên nửa khoảng \(\left( {\frac{1}{3};5} \right]\);
d) \(y = \frac{{2{x^2} + 3x - 3}}{{2x + 5}}\) trên đoạn [−2; 4].
Quảng cáo
Trả lời:
a) \(y = \frac{{4{x^2} - 2x + 9}}{{2x - 1}}\) trên khoảng (1; +∞)
Tập xác định: D = ℝ\\(\left\{ {\frac{1}{2}} \right\}\).
Ta có: y' = \(\frac{{\left( {8x - 2} \right)\left( {2x - 1} \right) - 2\left( {4{x^2} - 2x + 9} \right)}}{{{{\left( {2x - 1} \right)}^2}}}\) = \(\frac{{8{x^2} - 8x - 16}}{{{{\left( {2x - 1} \right)}^2}}}\)
y' = 0 ⇔ \(\frac{{8{x^2} - 8x - 16}}{{{{\left( {2x - 1} \right)}^2}}}\) = 0 ⇔ x = 2 hoặc x = −1 (loại do −1∉ (1; +∞)).
Ta có bảng biến thiên:

Do đó, \(\mathop {\min }\limits_{\left( {1; + \infty } \right)} y = y\left( 2 \right)\) = 7, hàm số không có giá trị lớn nhất (1; +∞).
b) \(y = \frac{{{x^2} - 2}}{{2x + 1}}\) trên nửa khoảng [0; +∞)
Tập xác định: D = ℝ\\(\left\{ { - \frac{1}{2}} \right\}\).
Ta có: y' = \(\frac{{2x\left( {2x + 1} \right) - 2\left( {{x^2} - 2} \right)}}{{{{\left( {2x + 1} \right)}^2}}}\) = \(\frac{{2{x^2} + 2x + 4}}{{{{\left( {2x + 1} \right)}^2}}}\) = \(\frac{{2{{\left( {x + \frac{1}{2}} \right)}^2} + \frac{7}{2}}}{{{{\left( {2x + 1} \right)}^2}}}\) > 0,
với mọi x ∈ [0; +∞).
Ta có bản biến thiên:

Do đó, \(\mathop {\min }\limits_{\left[ {0; + \infty } \right)} y = y\left( 0 \right)\) = −2, hàm số không có giá trị lớn nhất trên [0; +∞).
c) \(y = \frac{{9{x^2} + 3x + 7}}{{3x - 1}}\) trên nửa khoảng \(\left( {\frac{1}{3};5} \right]\)
Tập xác định: D = ℝ\\(\left\{ {\frac{1}{3}} \right\}\).
Ta có: y' = \(\frac{{\left( {18x + 3} \right)\left( {3x - 1} \right) - 3\left( {9{x^2} + 3x + 7} \right)}}{{{{\left( {3x - 1} \right)}^2}}}\) = \(\frac{{27{x^2} - 18x - 24}}{{{{\left( {3x - 1} \right)}^2}}}\)
y' = 0 ⇔ \(\frac{{27{x^2} - 18x - 24}}{{{{\left( {3x - 1} \right)}^2}}}\) = 0 ⇔ x = \(\frac{4}{3}\) hoặc x = \(\frac{{ - 2}}{3}\) (loại do \(\frac{{ - 2}}{3}\) ∉ \(\left( {\frac{1}{3};5} \right]\)).
Ta có bảng biến thiên:

Do đó, \(\mathop {\min }\limits_{\left( {\frac{1}{3};5} \right]} y = y\left( {\frac{4}{3}} \right)\) = 9, hàm số không có giá trị lớn nhất trên \(\left( {\frac{1}{3};5} \right]\).
d) \(y = \frac{{2{x^2} + 3x - 3}}{{2x + 5}}\) trên đoạn [−2; 4]
Tập xác định: D = ℝ\\(\left\{ { - \frac{5}{2}} \right\}\).
Ta có: y' = \(\frac{{\left( {4x + 3} \right)\left( {2x + 5} \right) - 2\left( {2{x^2} + 3x - 3} \right)}}{{{{\left( {2x + 5} \right)}^2}}}\) = \(\frac{{4{x^2} + 20x + 21}}{{{{\left( {2x + 5} \right)}^2}}}\)
y' = 0 ⇔ \(\frac{{4{x^2} + 20x + 21}}{{{{\left( {2x + 5} \right)}^2}}}\) = 0 ⇔ x = \( - \frac{3}{2}\) hoặc x = \( - \frac{7}{2}\) (loại do \( - \frac{7}{2}\) ∉ [−2; 4]).
Ta có bảng biến thiên:

Do đó, \(\mathop {\max }\limits_{\left[ { - 2;4} \right]} y = y\left( 4 \right) = \frac{{41}}{{13}}\), \(\mathop {\min }\limits_{\left[ { - 2;4} \right]} y = y\left( { - \frac{3}{2}} \right)\) = \( - \frac{3}{2}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lợi nhuận xưởng thu được trong một ngày khi sản xuất x (kg) thành phẩm là:
P(x) = 513x – (2x3 – 30x2 + 177x + 2 592) = −2x3 + 30x2 + 336x – 2 592 với 0 ≤ x ≤ 20.
Ta có: P'(x) = −6x2 + 60x + 336
P'(x) = 0 ⇔ x = 14 hoặc x = −4 (loại do −4 ∉ [0; 20]).
Ta có bảng biến thiên:

Do đó \(\mathop {\max }\limits_{\left[ {0;20} \right]} P\left( x \right) = P\left( {14} \right) = 2504\).
Vậy x = 14 kg.
Lời giải
Ta có: h(t) = \( - \frac{4}{{255}}{t^3} + \frac{{49}}{{85}}{t^2} - \frac{{98}}{{17}}t + 20\) với 0 ≤ t ≤ 20.
h'(t) = \( - \frac{{12}}{{255}}{t^2} + \frac{{98}}{{85}}{t^2} - \frac{{98}}{{17}}\)
h'(t) = 0 ⇔ x = 7 hoặc x = \(\frac{{37}}{5}\).
Bảng xét dấu:

Do đó, tàu lượn đi xuống khi t trong các khoảng (0; 7) và \(\left( {\frac{{37}}{5};20} \right)\), tàu lượn đi lên khi t trong khoảng \(\left( {7;\frac{{37}}{5}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.