Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau:
a) \(y = \sqrt { - {x^2} + 9} \);
b) y = \(\frac{{x + 1}}{{{x^2} + 2x + 10}}\).
Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau:
a) \(y = \sqrt { - {x^2} + 9} \);
b) y = \(\frac{{x + 1}}{{{x^2} + 2x + 10}}\).
Quảng cáo
Trả lời:
a) \(y = \sqrt { - {x^2} + 9} \)
Tập xác định: D = [−3; 3].
Ta có: y' = \(\frac{{ - x}}{{\sqrt { - {x^2} + 9} }}\)
y' = 0 ⇔ \(\frac{{ - x}}{{\sqrt { - {x^2} + 9} }}\)= 0 ⇔ x = 0.
Tính các giá trị, ta được: y(−3) = 0, y(0) = 3, y(3) = 0.
Do đó, \(\mathop {\min }\limits_{\left[ { - 3;3} \right]} y = y\left( 3 \right) = y\left( { - 3} \right) = 0\), \(\mathop {\max }\limits_{\left[ { - 3;3} \right]} y = y\left( 0 \right) = 3\).
b) y = \(\frac{{x + 1}}{{{x^2} + 2x + 10}}\)
Tập xác định: D = ℝ.
Ta có: y' = \(\frac{{{x^2} + 2x + 10 - \left( {x + 1} \right)\left( {2x + 2} \right)}}{{{{\left( {{x^2} + 2x + 10} \right)}^2}}}\) = \(\frac{{ - {x^2} - 2x + 8}}{{{{\left( {{x^2} + 2x + 10} \right)}^2}}}\)
y' = 0 ⇔ x = 2 hoặc x = −4.
Ta có bảng biến thiên:

Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lợi nhuận xưởng thu được trong một ngày khi sản xuất x (kg) thành phẩm là:
P(x) = 513x – (2x3 – 30x2 + 177x + 2 592) = −2x3 + 30x2 + 336x – 2 592 với 0 ≤ x ≤ 20.
Ta có: P'(x) = −6x2 + 60x + 336
P'(x) = 0 ⇔ x = 14 hoặc x = −4 (loại do −4 ∉ [0; 20]).
Ta có bảng biến thiên:

Do đó \(\mathop {\max }\limits_{\left[ {0;20} \right]} P\left( x \right) = P\left( {14} \right) = 2504\).
Vậy x = 14 kg.
Lời giải
Ta có: h(t) = \( - \frac{4}{{255}}{t^3} + \frac{{49}}{{85}}{t^2} - \frac{{98}}{{17}}t + 20\) với 0 ≤ t ≤ 20.
h'(t) = \( - \frac{{12}}{{255}}{t^2} + \frac{{98}}{{85}}{t^2} - \frac{{98}}{{17}}\)
h'(t) = 0 ⇔ x = 7 hoặc x = \(\frac{{37}}{5}\).
Bảng xét dấu:

Do đó, tàu lượn đi xuống khi t trong các khoảng (0; 7) và \(\left( {\frac{{37}}{5};20} \right)\), tàu lượn đi lên khi t trong khoảng \(\left( {7;\frac{{37}}{5}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.