Cho tam giác ABC cân tại A nội tiếp trong đường tròn tâm O, bán kính 1 cm. Đặt \(\widehat A\) = α (0 < α < π).
a) Viết biểu thức tính diện tích S của tam giác ABC theo α.
b) Tìm diện tích lớn nhất của tam giác ABC.
Cho tam giác ABC cân tại A nội tiếp trong đường tròn tâm O, bán kính 1 cm. Đặt \(\widehat A\) = α (0 < α < π).
a) Viết biểu thức tính diện tích S của tam giác ABC theo α.
b) Tìm diện tích lớn nhất của tam giác ABC.
Quảng cáo
Trả lời:

a) Gọi M là trung điểm của BC, ta có \(\widehat {MOC} = 2\widehat {OAC} = \widehat {BAC}\) = α.
Do đó: AM = AO + OM = 1 + cosα,
BC = 2MC = 2sinα.
Suy ra S = \(\frac{1}{2}\)AM.BC = sinα(1 + cosα).
b) Ta có: S' = cosα(1 + cosα) – sin2α = 2cos2α + cosα – 1;
S' = 0 ⇔ cosα = −1 hoặc cosα = \(\frac{1}{2}\)
⇔ α = π + k2π hoặc α = \( \pm \frac{\pi }{3} + k2\pi \).
Mà 0 < α < π do đó α = \(\frac{\pi }{3}\).
Ta có bảng biến thiên:

Vậy \(\mathop {\max S}\limits_{\left( {0;\pi } \right)} = S\left( {\frac{\pi }{3}} \right) = \frac{{3\sqrt 3 }}{4}\) (cm2).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lợi nhuận xưởng thu được trong một ngày khi sản xuất x (kg) thành phẩm là:
P(x) = 513x – (2x3 – 30x2 + 177x + 2 592) = −2x3 + 30x2 + 336x – 2 592 với 0 ≤ x ≤ 20.
Ta có: P'(x) = −6x2 + 60x + 336
P'(x) = 0 ⇔ x = 14 hoặc x = −4 (loại do −4 ∉ [0; 20]).
Ta có bảng biến thiên:

Do đó \(\mathop {\max }\limits_{\left[ {0;20} \right]} P\left( x \right) = P\left( {14} \right) = 2504\).
Vậy x = 14 kg.
Lời giải
Ta có: h(t) = \( - \frac{4}{{255}}{t^3} + \frac{{49}}{{85}}{t^2} - \frac{{98}}{{17}}t + 20\) với 0 ≤ t ≤ 20.
h'(t) = \( - \frac{{12}}{{255}}{t^2} + \frac{{98}}{{85}}{t^2} - \frac{{98}}{{17}}\)
h'(t) = 0 ⇔ x = 7 hoặc x = \(\frac{{37}}{5}\).
Bảng xét dấu:

Do đó, tàu lượn đi xuống khi t trong các khoảng (0; 7) và \(\left( {\frac{{37}}{5};20} \right)\), tàu lượn đi lên khi t trong khoảng \(\left( {7;\frac{{37}}{5}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.