Câu hỏi:
19/09/2024 1,667
Tìm tọa độ tâm đối xứng I của đồ thị hàm số sau theo tham số m: y = f(x) = (2 – m)x3 – 3x2 + 2.
Chứng tỏ rằng khi m thay đổi, I luôn thuộc một parabol xác định.
Tìm tọa độ tâm đối xứng I của đồ thị hàm số sau theo tham số m: y = f(x) = (2 – m)x3 – 3x2 + 2.
Chứng tỏ rằng khi m thay đổi, I luôn thuộc một parabol xác định.
Quảng cáo
Trả lời:
Để hàm số đã cho là hàm số bậc ba, ta cần có điều kiện: 2 – m ≠ 0 hay m ≠ 2. (*)
Khi đó, gọi I là tâm đối xứng của đồ thị hàm số bậc ba, ta có:
I\(\left( {\frac{1}{{2 - m}}; - 2{{\left( {\frac{1}{{2 - m}}} \right)}^2} + 2} \right)\).
Thay \(\frac{1}{{2 - m}}\) bởi xI vào tung độ điểm I, ta có: yI = \( - 2x_I^2\) + 2.
Biểu thức cho thấy yI là một hàm số bậc hai theo xr.
Suy ra tâm đối xứng I của đồ thị hàm số đã cho luôn thuộc một parabol, đó là đồ thị hàm số y = −2x2 + 2.
Mặt khác, xI = \(\frac{1}{{2 - m}}\) nên m = 2 – \(\frac{1}{{{x_I}}}\).
Vậy với mọi xI ta luôn có m = 2 – \(\frac{1}{{{x_I}}}\) ≠ 2 (thỏa mãn *), nghĩa là tâm đối xứng I của đồ thị hàm số đã cho luôn thuộc parabol có phương trình y = −2x2 + 2.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lợi nhuận xưởng thu được trong một ngày khi sản xuất x (kg) thành phẩm là:
P(x) = 513x – (2x3 – 30x2 + 177x + 2 592) = −2x3 + 30x2 + 336x – 2 592 với 0 ≤ x ≤ 20.
Ta có: P'(x) = −6x2 + 60x + 336
P'(x) = 0 ⇔ x = 14 hoặc x = −4 (loại do −4 ∉ [0; 20]).
Ta có bảng biến thiên:

Do đó \(\mathop {\max }\limits_{\left[ {0;20} \right]} P\left( x \right) = P\left( {14} \right) = 2504\).
Vậy x = 14 kg.
Lời giải
Ta có: h(t) = \( - \frac{4}{{255}}{t^3} + \frac{{49}}{{85}}{t^2} - \frac{{98}}{{17}}t + 20\) với 0 ≤ t ≤ 20.
h'(t) = \( - \frac{{12}}{{255}}{t^2} + \frac{{98}}{{85}}{t^2} - \frac{{98}}{{17}}\)
h'(t) = 0 ⇔ x = 7 hoặc x = \(\frac{{37}}{5}\).
Bảng xét dấu:

Do đó, tàu lượn đi xuống khi t trong các khoảng (0; 7) và \(\left( {\frac{{37}}{5};20} \right)\), tàu lượn đi lên khi t trong khoảng \(\left( {7;\frac{{37}}{5}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.