Câu hỏi:
19/09/2024 1,826
Nam dùng một tấm bìa có kích thước 50 cm x 20 cm để làm một chiếc lon hình trụ (không có nắp).
Hỏi cần chọn bán kính đáy hình trụ là bao nhiêu xăngtimét thì lon hình trụ đạt thể tích lớn nhất?
Lưu ý: Kết quả làm tròn đến hàng phần trăm của xăngtimét, bỏ qua phần hao hụt khi cắt và tạo hình, đáy và mặt bên phải là các bìa nguyên vẹn (không ghép nối).
Nam dùng một tấm bìa có kích thước 50 cm x 20 cm để làm một chiếc lon hình trụ (không có nắp).

Hỏi cần chọn bán kính đáy hình trụ là bao nhiêu xăngtimét thì lon hình trụ đạt thể tích lớn nhất?
Lưu ý: Kết quả làm tròn đến hàng phần trăm của xăngtimét, bỏ qua phần hao hụt khi cắt và tạo hình, đáy và mặt bên phải là các bìa nguyên vẹn (không ghép nối).
Quảng cáo
Trả lời:
Gọi x (dm) là bán kính đáy hình trụ (x > 0).
Phương án 1:

Thể tích lon hình trụ cho bởi công thức:
V(x) = πx2(2 – 2x) với x ∈ \(\left( {0;\frac{5}{{2\pi }}} \right]\).
Khảo sát và vẽ đồ thị hàm số:

V(x) đạt giá trị lớn nhất trên \(\left( {0;\frac{5}{{2\pi }}} \right]\) là khoảng 0,93 dm3 khi x ≈ 0,67 dm.
Phương án 2:

Thể tích lon hình trụ cho bởi công thức:
V(x) = 2πx2 với x ∈ \(\left( {0;\frac{5}{{2\left( {\pi + 1} \right)}}} \right]\).
Khảo sát và vẽ đồ thị hàm số:

V(x) đạt giá trị lớn nhất trên \(\left( {0;\frac{5}{{2\left( {\pi + 1} \right)}}} \right]\) là khoảng 2,29 dm3 khi x ≈0,60 dm.
Vậy thể tích lon hình trụ lớn nhất khi thiết kế theo phương án 2 và bán kính đáy khoảng 0,60dm.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lợi nhuận xưởng thu được trong một ngày khi sản xuất x (kg) thành phẩm là:
P(x) = 513x – (2x3 – 30x2 + 177x + 2 592) = −2x3 + 30x2 + 336x – 2 592 với 0 ≤ x ≤ 20.
Ta có: P'(x) = −6x2 + 60x + 336
P'(x) = 0 ⇔ x = 14 hoặc x = −4 (loại do −4 ∉ [0; 20]).
Ta có bảng biến thiên:

Do đó \(\mathop {\max }\limits_{\left[ {0;20} \right]} P\left( x \right) = P\left( {14} \right) = 2504\).
Vậy x = 14 kg.
Lời giải
Ta có: h(t) = \( - \frac{4}{{255}}{t^3} + \frac{{49}}{{85}}{t^2} - \frac{{98}}{{17}}t + 20\) với 0 ≤ t ≤ 20.
h'(t) = \( - \frac{{12}}{{255}}{t^2} + \frac{{98}}{{85}}{t^2} - \frac{{98}}{{17}}\)
h'(t) = 0 ⇔ x = 7 hoặc x = \(\frac{{37}}{5}\).
Bảng xét dấu:

Do đó, tàu lượn đi xuống khi t trong các khoảng (0; 7) và \(\left( {\frac{{37}}{5};20} \right)\), tàu lượn đi lên khi t trong khoảng \(\left( {7;\frac{{37}}{5}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.