Câu hỏi:
19/09/2024 1,367
Cho hình bình hành OABD có \(\overrightarrow {OA} \) = (−1; 1; 0) và \(\overrightarrow {OB} \) = (1; 1; 0) với O là gốc tọa độ. Tìm tọa độ của điểm D.
Cho hình bình hành OABD có \(\overrightarrow {OA} \) = (−1; 1; 0) và \(\overrightarrow {OB} \) = (1; 1; 0) với O là gốc tọa độ. Tìm tọa độ của điểm D.
Quảng cáo
Trả lời:
Do OABD là hình bình hành với O là gốc tọa độ, nên
\(\overrightarrow {OD} = \overrightarrow {AB} = \overrightarrow {OB} - \overrightarrow {OA} = \left( {\overrightarrow i + \overrightarrow j } \right) - \left( { - \overrightarrow i + \overrightarrow j } \right) = 2\overrightarrow i \)
Suy ra \(\overrightarrow {OD} \) = (2; 0; 0) hay D(2; 0; 0).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hình chiếu của A(1; 2; 3) trên trục Oy là A'(0; 2; 0).
Khoảng cách từ A trên trục Oy là AA' = \(\sqrt {{{\left( {1 - 0} \right)}^2} + {{\left( {2 - 2} \right)}^2} + {{\left( {3 - 0} \right)}^2}} \) = \(\sqrt {10} \).
Lời giải
a) Tọa độ điểm M' là điểm đối xứng của điểm M qua gốc tọa độ O là M'(−3; 1; −2).
b) O' là điểm đối xứng của điểm O qua điểm M suy ra M là trung điểm của OO'.
Gọi O'(x; y; z) nên
\(\left\{ \begin{array}{l}\frac{{x + 0}}{2} = 3\\\frac{{y + 0}}{2} = - 1\\\frac{{z + 0}}{2} = 2\end{array} \right.\) ⇒ O'(6; −2; 4).
c) Khoảng cách từ M đến gốc tọa độ là MO = \(\sqrt {{{\left( {3 - 0} \right)}^2} + {{\left( { - 1 - 0} \right)}^2} + {{\left( {2 - 0} \right)}^2}} \) = \(\sqrt {14} \).
d) Mặt phẳng (Oxz) là y = 0.
Khoảng cách từ M đến mặt phẳng (Oxz) là d(M, (Oxz)) = \(\frac{{\left| {3.0 + 1.\left( { - 1} \right) + 2.0} \right|}}{{\sqrt {{0^2} + {1^2} + {0^2}} }}\) = 1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.