Cho điểm M(a; b; c). Gọi A, B, C theo thứ tự là điểm đối xứng của điểm M qua các mặt phẳng (Oxy), (Oyz), (Oxz). Tìm tọa độ trọng tâm tam giác ABC.
Cho điểm M(a; b; c). Gọi A, B, C theo thứ tự là điểm đối xứng của điểm M qua các mặt phẳng (Oxy), (Oyz), (Oxz). Tìm tọa độ trọng tâm tam giác ABC.
Quảng cáo
Trả lời:
Ta có A đối xứng với M qua mặt phẳng (Oxy) nên A(a; b; −c).
B đối xứng với M qua mặt phẳng (Oyz) nên B(−a; b; c).
C đối xứng với M qua mặt phẳng (Oxz) nên C(a; −b; c).
Gọi G(x; y; z) là trọng tâm tam giác ABC.
Do đó,
\(\left\{ \begin{array}{l}x = \frac{{a + \left( { - a} \right) + a}}{3} = \frac{a}{3}\\y = \frac{{b + b + \left( { - b} \right)}}{3} = \frac{b}{3}\\z = \frac{{ - c + c + c}}{3} = \frac{c}{3}\end{array} \right.\) ⇒ G\(\left( {\frac{a}{3};\frac{b}{3};\frac{c}{3}} \right)\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hình chiếu của A(1; 2; 3) trên trục Oy là A'(0; 2; 0).
Khoảng cách từ A trên trục Oy là AA' = \(\sqrt {{{\left( {1 - 0} \right)}^2} + {{\left( {2 - 2} \right)}^2} + {{\left( {3 - 0} \right)}^2}} \) = \(\sqrt {10} \).
Lời giải
a) Ta có OABC là hình chữ nhật nên \(\overrightarrow {OA} = \overrightarrow {CB} = \left( {6;0;0} \right)\) ⇒ B(6; 4; 0).
AEFB là hình chứ nhật nên \(\overrightarrow {AE} = \overrightarrow {BF} = \left( {0;0;4} \right)\) ⇒ F(6; 4; 4).
DEFH là hình chữ nhật nên \(\overrightarrow {ED} = \overrightarrow {FH} = \left( {6;0;0} \right)\) ⇒ H(12; 4; 4).
b) Ta có: \(\overrightarrow {ME} \) = (0; −2; −2); \(\overrightarrow {MF} \) = (0; 2; −2).
c) Ta có: cos\(\widehat {EMF}\) = \(\frac{{\overrightarrow {ME} .\overrightarrow {MF} }}{{\left| {\overrightarrow {ME} } \right|.\left| {\overrightarrow {MF} } \right|}} = \frac{{0.0 + \left( { - 2} \right).2 + \left( { - 2} \right).\left( { - 2} \right)}}{{\sqrt {{0^2} + {{\left( { - 2} \right)}^2} + {{\left( { - 2} \right)}^2}} .\sqrt {{0^2} + {2^2} + {{\left( { - 2} \right)}^2}} }} = 0\).
⇒ \(\widehat {EMF}\) = 90°.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.