Giải SBT Toán 12 Chân trời sáng tạo Bài 3. Biểu thức tọa độ của các phép toán vectơ có đáp án
31 người thi tuần này 4.6 297 lượt thi 10 câu hỏi
🔥 Đề thi HOT:
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
240 câu Bài tập Hàm số mũ, logarit ôn thi THPT Quốc gia có lời giải (P1)
10000 câu trắc nghiệm tổng hợp môn Toán 2025 mới nhất (có đáp án) - Phần 1
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
215 câu Bài tập Hàm số mũ, logarit cơ bản, nâng cao có lời giải (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Ta có: \(\overrightarrow a = 2\overrightarrow i + 3\overrightarrow j - 5\overrightarrow k \) suy ra \(\overrightarrow a \) = (2; 3; −5).
\(\overrightarrow b = - 3\overrightarrow j + 4\overrightarrow k \) suy ra \(\overrightarrow b \) = (0; −3; 4).
\(\overrightarrow c = - \overrightarrow i - 2\overrightarrow j \) suy ra \(\overrightarrow c \) = (−1; −2; 0).
Lời giải
Do OABD là hình bình hành với O là gốc tọa độ, nên
\(\overrightarrow {OD} = \overrightarrow {AB} = \overrightarrow {OB} - \overrightarrow {OA} = \left( {\overrightarrow i + \overrightarrow j } \right) - \left( { - \overrightarrow i + \overrightarrow j } \right) = 2\overrightarrow i \)
Suy ra \(\overrightarrow {OD} \) = (2; 0; 0) hay D(2; 0; 0).
Lời giải
Gọi A(a; b; c).
Có G là trọng tâm nên \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GO} = \overrightarrow 0 \)
⇔\(\overrightarrow {GA} + \left( {\overrightarrow {GA} + \overrightarrow {AB} } \right) + \left( {\overrightarrow {GA} + \overrightarrow {AC} } \right) + \left( {\overrightarrow {GA} + \overrightarrow {AO} } \right) = \overrightarrow 0 \)
⇔ \(\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AO} = 4\overrightarrow {AG} \)
Ta có: \(\overrightarrow {AB} \) = (1; 2; 3), \(\overrightarrow {AC} \) = (−1; 4; −2), \(\overrightarrow {AO} \) = (−a; −b; −c),
⇒ \(\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AO} \) = (−a; 6 – b; 1 – c).
\(\overrightarrow {AG} \) = (3 – a; −3 – b; 6 – c) ⇒ \(4\overrightarrow {AG} \) = (12 – 4a; −12 – 4b; 24 – 4c).
Do đó, \(\left\{ \begin{array}{l} - a = 12 - 4a\\6 - b = - 12 - 4a\\1 - c = 24 - 4c\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = 4\\b = - 6\\c = \frac{{23}}{3}\end{array} \right.\) ⇒ A\(\left( {4; - 6;\frac{{23}}{3}} \right)\).
Lời giải
Do ABCD.A'B'C'D' là hình hộp nên ta có \(\overrightarrow {AB} = \overrightarrow {DC} = (2; - 4;0)\).
Gọi D(x; y; z) suy ra \(\left\{ \begin{array}{l} - 1 - x = 2\\4 - y = - 4\\ - 7 - z = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = - 3\\y = 8\\z = - 7\end{array} \right.\) ⇒ D(−3; 8; −7).
Ta có: \(\overrightarrow {BB'} = \overrightarrow {DD'} = \left( {9;0;17} \right)\)
Gọi B'(a; b; c) suy ra \(\left\{ \begin{array}{l}a - 4 = 9\\b - 0 = 0\\c - 0 = 17\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = 13\\b = 0\\c = 17\end{array} \right.\) ⇒ B'(13; 0; 17).
Lời giải
Ta có: A(2; 2; 1), suy ra OA = \(\left| {\overrightarrow {OA} } \right|\) = \(\sqrt {{2^2} + {2^2} + {1^2}} \) = 3.
Vậy OA = 3.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.