Câu hỏi:
19/09/2024 129
Cho ba điểm A(0; 2; −1), B(−5; 4; 2), C(−1; 0; 5). Tìm tọa độ trọng tâm G của tam giác ABC.
Cho ba điểm A(0; 2; −1), B(−5; 4; 2), C(−1; 0; 5). Tìm tọa độ trọng tâm G của tam giác ABC.
Quảng cáo
Trả lời:
Gọi G(x; y; z) là trọng tâm tam giác ABC.
Ta có:
\(\left\{ \begin{array}{l}x = \frac{{0 + \left( { - 5} \right) + \left( { - 1} \right)}}{3} = - 2\\y = \frac{{2 + 4 + 0}}{3} = 2\\z = \frac{{ - 1 + 2 + 5}}{3} = 2\end{array} \right.\)⇒ G(−2; 2; 2).
Vậy G(−2; 2; 2).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hình chiếu của A(1; 2; 3) trên trục Oy là A'(0; 2; 0).
Khoảng cách từ A trên trục Oy là AA' = \(\sqrt {{{\left( {1 - 0} \right)}^2} + {{\left( {2 - 2} \right)}^2} + {{\left( {3 - 0} \right)}^2}} \) = \(\sqrt {10} \).
Lời giải
a) Tọa độ điểm M' là điểm đối xứng của điểm M qua gốc tọa độ O là M'(−3; 1; −2).
b) O' là điểm đối xứng của điểm O qua điểm M suy ra M là trung điểm của OO'.
Gọi O'(x; y; z) nên
\(\left\{ \begin{array}{l}\frac{{x + 0}}{2} = 3\\\frac{{y + 0}}{2} = - 1\\\frac{{z + 0}}{2} = 2\end{array} \right.\) ⇒ O'(6; −2; 4).
c) Khoảng cách từ M đến gốc tọa độ là MO = \(\sqrt {{{\left( {3 - 0} \right)}^2} + {{\left( { - 1 - 0} \right)}^2} + {{\left( {2 - 0} \right)}^2}} \) = \(\sqrt {14} \).
d) Mặt phẳng (Oxz) là y = 0.
Khoảng cách từ M đến mặt phẳng (Oxz) là d(M, (Oxz)) = \(\frac{{\left| {3.0 + 1.\left( { - 1} \right) + 2.0} \right|}}{{\sqrt {{0^2} + {1^2} + {0^2}} }}\) = 1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.