Câu hỏi:

19/09/2024 1,653

Một nhân viên đang sử dụng phần mềm để thiết kế khung của một ngôi nhà trong không gian Oxyz được minh họa như Hình 3. Cho biết OABC.DEFH là hình hộp chữ nhật và EMF.DNH là hình lăng trụ đứng.

Một nhân viên đang sử dụng phần mềm để thiết kế khung của một ngôi nhà trong không gian Oxyz được minh họa như Hình 3. Cho biết OABC.DEFH là hình hộp chữ nhật và EMF.DNH là hình lăng trụ đứng. (ảnh 1)

a) Tìm tọa độ các điểm B, F, H.

b) Tìm tọa độ các vectơ \(\overrightarrow {ME} ,\overrightarrow {MF} \).

c) Tính số đo \(\widehat {EMF}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta có OABC là hình chữ nhật nên \(\overrightarrow {OA} = \overrightarrow {CB} = \left( {6;0;0} \right)\) B(6; 4; 0).

              AEFB là hình chứ nhật nên \(\overrightarrow {AE} = \overrightarrow {BF} = \left( {0;0;4} \right)\) F(6; 4; 4).

              DEFH là hình chữ nhật nên \(\overrightarrow {ED} = \overrightarrow {FH} = \left( {6;0;0} \right)\) H(12; 4; 4).

b) Ta có: \(\overrightarrow {ME} \) = (0; −2; −2); \(\overrightarrow {MF} \) = (0; 2; −2).

c) Ta có: cos\(\widehat {EMF}\) = \(\frac{{\overrightarrow {ME} .\overrightarrow {MF} }}{{\left| {\overrightarrow {ME} } \right|.\left| {\overrightarrow {MF} } \right|}} = \frac{{0.0 + \left( { - 2} \right).2 + \left( { - 2} \right).\left( { - 2} \right)}}{{\sqrt {{0^2} + {{\left( { - 2} \right)}^2} + {{\left( { - 2} \right)}^2}} .\sqrt {{0^2} + {2^2} + {{\left( { - 2} \right)}^2}} }} = 0\).

\(\widehat {EMF}\) = 90°.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hình chiếu của A(1; 2; 3) trên trục Oy là A'(0; 2; 0).

Khoảng cách từ A trên trục Oy là AA' = \(\sqrt {{{\left( {1 - 0} \right)}^2} + {{\left( {2 - 2} \right)}^2} + {{\left( {3 - 0} \right)}^2}} \) = \(\sqrt {10} \).

Lời giải

a) Tọa độ điểm M' là điểm đối xứng của điểm M qua gốc tọa độ O là M'(−3; 1; −2).

b) O' là điểm đối xứng của điểm O qua điểm M suy ra M là trung điểm của OO'.

Gọi O'(x; y; z) nên

 \(\left\{ \begin{array}{l}\frac{{x + 0}}{2} = 3\\\frac{{y + 0}}{2} = - 1\\\frac{{z + 0}}{2} = 2\end{array} \right.\) O'(6; −2; 4).

c) Khoảng cách từ M đến gốc tọa độ là MO = \(\sqrt {{{\left( {3 - 0} \right)}^2} + {{\left( { - 1 - 0} \right)}^2} + {{\left( {2 - 0} \right)}^2}} \) = \(\sqrt {14} \).

d) Mặt phẳng (Oxz) là y = 0.

Khoảng cách từ M đến mặt phẳng (Oxz) là d(M, (Oxz)) = \(\frac{{\left| {3.0 + 1.\left( { - 1} \right) + 2.0} \right|}}{{\sqrt {{0^2} + {1^2} + {0^2}} }}\) = 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP